Composition, Structure, and Properties of Sintered Silicon-Containing Titanium Alloys
The main factors limiting the application of high-temperature creep-rupture resistant titanium alloys synthesized from powder components by pressing and subsequent vacuum sintering for the manufacture of parts for gas turbine engines are analyzed. The method for synthesizing the VT1-0 alloy and an a...
Gespeichert in:
Veröffentlicht in: | Powder metallurgy and metal ceramics 2020, Vol.58 (9-10), p.613-621 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 621 |
---|---|
container_issue | 9-10 |
container_start_page | 613 |
container_title | Powder metallurgy and metal ceramics |
container_volume | 58 |
creator | Bykov, I. O. Ovchinnikov, A. V. Pavlenko, D. V. Lechovitzer, Z. V. |
description | The main factors limiting the application of high-temperature creep-rupture resistant titanium alloys synthesized from powder components by pressing and subsequent vacuum sintering for the manufacture of parts for gas turbine engines are analyzed. The method for synthesizing the VT1-0 alloy and an alloy whose chemical composition corresponds to the high-temperature creep-rupture resistant VT8 alloy is described. Their chemical and phase composition, strength, hardness, and distribution of doping elements are examined. Upon analysis of the composition, structure, and properties of the samples produced from the test alloys synthesized from PT5 titanium powders with different particle sizes by powder metallurgy methods, it was concluded that semi-finished products could be produced from the VT1-0 and VT8 titanium alloys. The effect of the particle size of the titanium matrix on the chemical composition of the synthesized alloys is studied. The chemical composition of the test alloy complies with the industry standard for semi-finished products of hightemperature creep-rupture resistant titanium alloys. The influence of the particle-size distribution of titanium powder on the strength, hardness, and residual porosity of the synthesized alloys is established. Regardless of the particle size of the powder mixture matrix (ranging from 40 to 400 μm), the strength, ductility, and hardness of the test VT8 alloy do not comply with the requirements of standards OST 90002–70 and OST 90006–70, which govern these properties for bars and blanks of gas turbine engine blades. It is concluded that a series of measures are required to eliminate the residual porosity and impart the blade structure to the material to improve the strength properties. |
doi_str_mv | 10.1007/s11106-020-00117-w |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2383816055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A618785562</galeid><sourcerecordid>A618785562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-43cb0158a2bea5918f09130057817891faafa5df10563410e529ee58a51b7f6d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRsFb_gKcFr02d2TTZ7LEUv6CgoD2HdDcpkW1SkyzFf290BW-SwwzheZKZtyiuEeYIUN9GRAROoAICgFiT40kxQVZT0gDnp7kHLghSqM6LixjfMwSwwEmxWfn9wUebrHez8jWFoU1D0LNSua58Cf6gQ7I6lt6Ur9YlHXSXm9623pGVd0lZZ92ufLNJOTvsy2Xf-894WZwZ1Ud99Vunxeb-7m31SNbPD0-r5Zq0lIlEFrTdAjKhqq1WrEFhoMkzAqsF1qJBo5RRrDMIjNMFgmZVo3XmGW5rwzs6LW7Gdw_Bfww6Jvnuh-Dyl7KiggrkwFim5iO1U72W1hmfgmrz6fT-exFtbL5fchS1YIxXWahGoQ0-xqCNPAS7V-FTIsjvvOWYt8x5y5-85TFLdJRiht1Oh79Z_rG-ALfQgqU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383816055</pqid></control><display><type>article</type><title>Composition, Structure, and Properties of Sintered Silicon-Containing Titanium Alloys</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bykov, I. O. ; Ovchinnikov, A. V. ; Pavlenko, D. V. ; Lechovitzer, Z. V.</creator><creatorcontrib>Bykov, I. O. ; Ovchinnikov, A. V. ; Pavlenko, D. V. ; Lechovitzer, Z. V.</creatorcontrib><description>The main factors limiting the application of high-temperature creep-rupture resistant titanium alloys synthesized from powder components by pressing and subsequent vacuum sintering for the manufacture of parts for gas turbine engines are analyzed. The method for synthesizing the VT1-0 alloy and an alloy whose chemical composition corresponds to the high-temperature creep-rupture resistant VT8 alloy is described. Their chemical and phase composition, strength, hardness, and distribution of doping elements are examined. Upon analysis of the composition, structure, and properties of the samples produced from the test alloys synthesized from PT5 titanium powders with different particle sizes by powder metallurgy methods, it was concluded that semi-finished products could be produced from the VT1-0 and VT8 titanium alloys. The effect of the particle size of the titanium matrix on the chemical composition of the synthesized alloys is studied. The chemical composition of the test alloy complies with the industry standard for semi-finished products of hightemperature creep-rupture resistant titanium alloys. The influence of the particle-size distribution of titanium powder on the strength, hardness, and residual porosity of the synthesized alloys is established. Regardless of the particle size of the powder mixture matrix (ranging from 40 to 400 μm), the strength, ductility, and hardness of the test VT8 alloy do not comply with the requirements of standards OST 90002–70 and OST 90006–70, which govern these properties for bars and blanks of gas turbine engine blades. It is concluded that a series of measures are required to eliminate the residual porosity and impart the blade structure to the material to improve the strength properties.</description><identifier>ISSN: 1068-1302</identifier><identifier>EISSN: 1573-9066</identifier><identifier>DOI: 10.1007/s11106-020-00117-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloy powders ; Ceramics ; Characterization and Evaluation of Materials ; Chemical composition ; Chemical synthesis ; Chemistry and Materials Science ; Composites ; Creep (materials) ; Ductility tests ; Exchange of Experience ; Gas turbine engines ; Gas-turbines ; Glass ; Hardness ; High temperature ; Industry standards ; Materials Science ; Mechanical properties ; Metal products ; Metallic Materials ; Natural Materials ; Particle size ; Particle size distribution ; Phase composition ; Porosity ; Powder metallurgy ; Powders ; Properties (attributes) ; Rupture ; Silicon ; Sintering ; Specialty metals industry ; Strength ; Titanium ; Titanium alloys ; Titanium base alloys ; Vacuum sintering</subject><ispartof>Powder metallurgy and metal ceramics, 2020, Vol.58 (9-10), p.613-621</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>2020© Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-43cb0158a2bea5918f09130057817891faafa5df10563410e529ee58a51b7f6d3</citedby><cites>FETCH-LOGICAL-c358t-43cb0158a2bea5918f09130057817891faafa5df10563410e529ee58a51b7f6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11106-020-00117-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11106-020-00117-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bykov, I. O.</creatorcontrib><creatorcontrib>Ovchinnikov, A. V.</creatorcontrib><creatorcontrib>Pavlenko, D. V.</creatorcontrib><creatorcontrib>Lechovitzer, Z. V.</creatorcontrib><title>Composition, Structure, and Properties of Sintered Silicon-Containing Titanium Alloys</title><title>Powder metallurgy and metal ceramics</title><addtitle>Powder Metall Met Ceram</addtitle><description>The main factors limiting the application of high-temperature creep-rupture resistant titanium alloys synthesized from powder components by pressing and subsequent vacuum sintering for the manufacture of parts for gas turbine engines are analyzed. The method for synthesizing the VT1-0 alloy and an alloy whose chemical composition corresponds to the high-temperature creep-rupture resistant VT8 alloy is described. Their chemical and phase composition, strength, hardness, and distribution of doping elements are examined. Upon analysis of the composition, structure, and properties of the samples produced from the test alloys synthesized from PT5 titanium powders with different particle sizes by powder metallurgy methods, it was concluded that semi-finished products could be produced from the VT1-0 and VT8 titanium alloys. The effect of the particle size of the titanium matrix on the chemical composition of the synthesized alloys is studied. The chemical composition of the test alloy complies with the industry standard for semi-finished products of hightemperature creep-rupture resistant titanium alloys. The influence of the particle-size distribution of titanium powder on the strength, hardness, and residual porosity of the synthesized alloys is established. Regardless of the particle size of the powder mixture matrix (ranging from 40 to 400 μm), the strength, ductility, and hardness of the test VT8 alloy do not comply with the requirements of standards OST 90002–70 and OST 90006–70, which govern these properties for bars and blanks of gas turbine engine blades. It is concluded that a series of measures are required to eliminate the residual porosity and impart the blade structure to the material to improve the strength properties.</description><subject>Alloy powders</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical composition</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Creep (materials)</subject><subject>Ductility tests</subject><subject>Exchange of Experience</subject><subject>Gas turbine engines</subject><subject>Gas-turbines</subject><subject>Glass</subject><subject>Hardness</subject><subject>High temperature</subject><subject>Industry standards</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metal products</subject><subject>Metallic Materials</subject><subject>Natural Materials</subject><subject>Particle size</subject><subject>Particle size distribution</subject><subject>Phase composition</subject><subject>Porosity</subject><subject>Powder metallurgy</subject><subject>Powders</subject><subject>Properties (attributes)</subject><subject>Rupture</subject><subject>Silicon</subject><subject>Sintering</subject><subject>Specialty metals industry</subject><subject>Strength</subject><subject>Titanium</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Vacuum sintering</subject><issn>1068-1302</issn><issn>1573-9066</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhhdRsFb_gKcFr02d2TTZ7LEUv6CgoD2HdDcpkW1SkyzFf290BW-SwwzheZKZtyiuEeYIUN9GRAROoAICgFiT40kxQVZT0gDnp7kHLghSqM6LixjfMwSwwEmxWfn9wUebrHez8jWFoU1D0LNSua58Cf6gQ7I6lt6Ur9YlHXSXm9623pGVd0lZZ92ufLNJOTvsy2Xf-894WZwZ1Ud99Vunxeb-7m31SNbPD0-r5Zq0lIlEFrTdAjKhqq1WrEFhoMkzAqsF1qJBo5RRrDMIjNMFgmZVo3XmGW5rwzs6LW7Gdw_Bfww6Jvnuh-Dyl7KiggrkwFim5iO1U72W1hmfgmrz6fT-exFtbL5fchS1YIxXWahGoQ0-xqCNPAS7V-FTIsjvvOWYt8x5y5-85TFLdJRiht1Oh79Z_rG-ALfQgqU</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Bykov, I. O.</creator><creator>Ovchinnikov, A. V.</creator><creator>Pavlenko, D. V.</creator><creator>Lechovitzer, Z. V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2020</creationdate><title>Composition, Structure, and Properties of Sintered Silicon-Containing Titanium Alloys</title><author>Bykov, I. O. ; Ovchinnikov, A. V. ; Pavlenko, D. V. ; Lechovitzer, Z. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-43cb0158a2bea5918f09130057817891faafa5df10563410e529ee58a51b7f6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alloy powders</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical composition</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Creep (materials)</topic><topic>Ductility tests</topic><topic>Exchange of Experience</topic><topic>Gas turbine engines</topic><topic>Gas-turbines</topic><topic>Glass</topic><topic>Hardness</topic><topic>High temperature</topic><topic>Industry standards</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metal products</topic><topic>Metallic Materials</topic><topic>Natural Materials</topic><topic>Particle size</topic><topic>Particle size distribution</topic><topic>Phase composition</topic><topic>Porosity</topic><topic>Powder metallurgy</topic><topic>Powders</topic><topic>Properties (attributes)</topic><topic>Rupture</topic><topic>Silicon</topic><topic>Sintering</topic><topic>Specialty metals industry</topic><topic>Strength</topic><topic>Titanium</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Vacuum sintering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bykov, I. O.</creatorcontrib><creatorcontrib>Ovchinnikov, A. V.</creatorcontrib><creatorcontrib>Pavlenko, D. V.</creatorcontrib><creatorcontrib>Lechovitzer, Z. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Powder metallurgy and metal ceramics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bykov, I. O.</au><au>Ovchinnikov, A. V.</au><au>Pavlenko, D. V.</au><au>Lechovitzer, Z. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composition, Structure, and Properties of Sintered Silicon-Containing Titanium Alloys</atitle><jtitle>Powder metallurgy and metal ceramics</jtitle><stitle>Powder Metall Met Ceram</stitle><date>2020</date><risdate>2020</risdate><volume>58</volume><issue>9-10</issue><spage>613</spage><epage>621</epage><pages>613-621</pages><issn>1068-1302</issn><eissn>1573-9066</eissn><abstract>The main factors limiting the application of high-temperature creep-rupture resistant titanium alloys synthesized from powder components by pressing and subsequent vacuum sintering for the manufacture of parts for gas turbine engines are analyzed. The method for synthesizing the VT1-0 alloy and an alloy whose chemical composition corresponds to the high-temperature creep-rupture resistant VT8 alloy is described. Their chemical and phase composition, strength, hardness, and distribution of doping elements are examined. Upon analysis of the composition, structure, and properties of the samples produced from the test alloys synthesized from PT5 titanium powders with different particle sizes by powder metallurgy methods, it was concluded that semi-finished products could be produced from the VT1-0 and VT8 titanium alloys. The effect of the particle size of the titanium matrix on the chemical composition of the synthesized alloys is studied. The chemical composition of the test alloy complies with the industry standard for semi-finished products of hightemperature creep-rupture resistant titanium alloys. The influence of the particle-size distribution of titanium powder on the strength, hardness, and residual porosity of the synthesized alloys is established. Regardless of the particle size of the powder mixture matrix (ranging from 40 to 400 μm), the strength, ductility, and hardness of the test VT8 alloy do not comply with the requirements of standards OST 90002–70 and OST 90006–70, which govern these properties for bars and blanks of gas turbine engine blades. It is concluded that a series of measures are required to eliminate the residual porosity and impart the blade structure to the material to improve the strength properties.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11106-020-00117-w</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1068-1302 |
ispartof | Powder metallurgy and metal ceramics, 2020, Vol.58 (9-10), p.613-621 |
issn | 1068-1302 1573-9066 |
language | eng |
recordid | cdi_proquest_journals_2383816055 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alloy powders Ceramics Characterization and Evaluation of Materials Chemical composition Chemical synthesis Chemistry and Materials Science Composites Creep (materials) Ductility tests Exchange of Experience Gas turbine engines Gas-turbines Glass Hardness High temperature Industry standards Materials Science Mechanical properties Metal products Metallic Materials Natural Materials Particle size Particle size distribution Phase composition Porosity Powder metallurgy Powders Properties (attributes) Rupture Silicon Sintering Specialty metals industry Strength Titanium Titanium alloys Titanium base alloys Vacuum sintering |
title | Composition, Structure, and Properties of Sintered Silicon-Containing Titanium Alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A17%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composition,%20Structure,%20and%20Properties%20of%20Sintered%20Silicon-Containing%20Titanium%20Alloys&rft.jtitle=Powder%20metallurgy%20and%20metal%20ceramics&rft.au=Bykov,%20I.%20O.&rft.date=2020&rft.volume=58&rft.issue=9-10&rft.spage=613&rft.epage=621&rft.pages=613-621&rft.issn=1068-1302&rft.eissn=1573-9066&rft_id=info:doi/10.1007/s11106-020-00117-w&rft_dat=%3Cgale_proqu%3EA618785562%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2383816055&rft_id=info:pmid/&rft_galeid=A618785562&rfr_iscdi=true |