Composition, Structure, and Properties of Sintered Silicon-Containing Titanium Alloys

The main factors limiting the application of high-temperature creep-rupture resistant titanium alloys synthesized from powder components by pressing and subsequent vacuum sintering for the manufacture of parts for gas turbine engines are analyzed. The method for synthesizing the VT1-0 alloy and an a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Powder metallurgy and metal ceramics 2020, Vol.58 (9-10), p.613-621
Hauptverfasser: Bykov, I. O., Ovchinnikov, A. V., Pavlenko, D. V., Lechovitzer, Z. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 621
container_issue 9-10
container_start_page 613
container_title Powder metallurgy and metal ceramics
container_volume 58
creator Bykov, I. O.
Ovchinnikov, A. V.
Pavlenko, D. V.
Lechovitzer, Z. V.
description The main factors limiting the application of high-temperature creep-rupture resistant titanium alloys synthesized from powder components by pressing and subsequent vacuum sintering for the manufacture of parts for gas turbine engines are analyzed. The method for synthesizing the VT1-0 alloy and an alloy whose chemical composition corresponds to the high-temperature creep-rupture resistant VT8 alloy is described. Their chemical and phase composition, strength, hardness, and distribution of doping elements are examined. Upon analysis of the composition, structure, and properties of the samples produced from the test alloys synthesized from PT5 titanium powders with different particle sizes by powder metallurgy methods, it was concluded that semi-finished products could be produced from the VT1-0 and VT8 titanium alloys. The effect of the particle size of the titanium matrix on the chemical composition of the synthesized alloys is studied. The chemical composition of the test alloy complies with the industry standard for semi-finished products of hightemperature creep-rupture resistant titanium alloys. The influence of the particle-size distribution of titanium powder on the strength, hardness, and residual porosity of the synthesized alloys is established. Regardless of the particle size of the powder mixture matrix (ranging from 40 to 400 μm), the strength, ductility, and hardness of the test VT8 alloy do not comply with the requirements of standards OST 90002–70 and OST 90006–70, which govern these properties for bars and blanks of gas turbine engine blades. It is concluded that a series of measures are required to eliminate the residual porosity and impart the blade structure to the material to improve the strength properties.
doi_str_mv 10.1007/s11106-020-00117-w
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2383816055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A618785562</galeid><sourcerecordid>A618785562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-43cb0158a2bea5918f09130057817891faafa5df10563410e529ee58a51b7f6d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRsFb_gKcFr02d2TTZ7LEUv6CgoD2HdDcpkW1SkyzFf290BW-SwwzheZKZtyiuEeYIUN9GRAROoAICgFiT40kxQVZT0gDnp7kHLghSqM6LixjfMwSwwEmxWfn9wUebrHez8jWFoU1D0LNSua58Cf6gQ7I6lt6Ur9YlHXSXm9623pGVd0lZZ92ufLNJOTvsy2Xf-894WZwZ1Ud99Vunxeb-7m31SNbPD0-r5Zq0lIlEFrTdAjKhqq1WrEFhoMkzAqsF1qJBo5RRrDMIjNMFgmZVo3XmGW5rwzs6LW7Gdw_Bfww6Jvnuh-Dyl7KiggrkwFim5iO1U72W1hmfgmrz6fT-exFtbL5fchS1YIxXWahGoQ0-xqCNPAS7V-FTIsjvvOWYt8x5y5-85TFLdJRiht1Oh79Z_rG-ALfQgqU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383816055</pqid></control><display><type>article</type><title>Composition, Structure, and Properties of Sintered Silicon-Containing Titanium Alloys</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bykov, I. O. ; Ovchinnikov, A. V. ; Pavlenko, D. V. ; Lechovitzer, Z. V.</creator><creatorcontrib>Bykov, I. O. ; Ovchinnikov, A. V. ; Pavlenko, D. V. ; Lechovitzer, Z. V.</creatorcontrib><description>The main factors limiting the application of high-temperature creep-rupture resistant titanium alloys synthesized from powder components by pressing and subsequent vacuum sintering for the manufacture of parts for gas turbine engines are analyzed. The method for synthesizing the VT1-0 alloy and an alloy whose chemical composition corresponds to the high-temperature creep-rupture resistant VT8 alloy is described. Their chemical and phase composition, strength, hardness, and distribution of doping elements are examined. Upon analysis of the composition, structure, and properties of the samples produced from the test alloys synthesized from PT5 titanium powders with different particle sizes by powder metallurgy methods, it was concluded that semi-finished products could be produced from the VT1-0 and VT8 titanium alloys. The effect of the particle size of the titanium matrix on the chemical composition of the synthesized alloys is studied. The chemical composition of the test alloy complies with the industry standard for semi-finished products of hightemperature creep-rupture resistant titanium alloys. The influence of the particle-size distribution of titanium powder on the strength, hardness, and residual porosity of the synthesized alloys is established. Regardless of the particle size of the powder mixture matrix (ranging from 40 to 400 μm), the strength, ductility, and hardness of the test VT8 alloy do not comply with the requirements of standards OST 90002–70 and OST 90006–70, which govern these properties for bars and blanks of gas turbine engine blades. It is concluded that a series of measures are required to eliminate the residual porosity and impart the blade structure to the material to improve the strength properties.</description><identifier>ISSN: 1068-1302</identifier><identifier>EISSN: 1573-9066</identifier><identifier>DOI: 10.1007/s11106-020-00117-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloy powders ; Ceramics ; Characterization and Evaluation of Materials ; Chemical composition ; Chemical synthesis ; Chemistry and Materials Science ; Composites ; Creep (materials) ; Ductility tests ; Exchange of Experience ; Gas turbine engines ; Gas-turbines ; Glass ; Hardness ; High temperature ; Industry standards ; Materials Science ; Mechanical properties ; Metal products ; Metallic Materials ; Natural Materials ; Particle size ; Particle size distribution ; Phase composition ; Porosity ; Powder metallurgy ; Powders ; Properties (attributes) ; Rupture ; Silicon ; Sintering ; Specialty metals industry ; Strength ; Titanium ; Titanium alloys ; Titanium base alloys ; Vacuum sintering</subject><ispartof>Powder metallurgy and metal ceramics, 2020, Vol.58 (9-10), p.613-621</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>2020© Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-43cb0158a2bea5918f09130057817891faafa5df10563410e529ee58a51b7f6d3</citedby><cites>FETCH-LOGICAL-c358t-43cb0158a2bea5918f09130057817891faafa5df10563410e529ee58a51b7f6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11106-020-00117-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11106-020-00117-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bykov, I. O.</creatorcontrib><creatorcontrib>Ovchinnikov, A. V.</creatorcontrib><creatorcontrib>Pavlenko, D. V.</creatorcontrib><creatorcontrib>Lechovitzer, Z. V.</creatorcontrib><title>Composition, Structure, and Properties of Sintered Silicon-Containing Titanium Alloys</title><title>Powder metallurgy and metal ceramics</title><addtitle>Powder Metall Met Ceram</addtitle><description>The main factors limiting the application of high-temperature creep-rupture resistant titanium alloys synthesized from powder components by pressing and subsequent vacuum sintering for the manufacture of parts for gas turbine engines are analyzed. The method for synthesizing the VT1-0 alloy and an alloy whose chemical composition corresponds to the high-temperature creep-rupture resistant VT8 alloy is described. Their chemical and phase composition, strength, hardness, and distribution of doping elements are examined. Upon analysis of the composition, structure, and properties of the samples produced from the test alloys synthesized from PT5 titanium powders with different particle sizes by powder metallurgy methods, it was concluded that semi-finished products could be produced from the VT1-0 and VT8 titanium alloys. The effect of the particle size of the titanium matrix on the chemical composition of the synthesized alloys is studied. The chemical composition of the test alloy complies with the industry standard for semi-finished products of hightemperature creep-rupture resistant titanium alloys. The influence of the particle-size distribution of titanium powder on the strength, hardness, and residual porosity of the synthesized alloys is established. Regardless of the particle size of the powder mixture matrix (ranging from 40 to 400 μm), the strength, ductility, and hardness of the test VT8 alloy do not comply with the requirements of standards OST 90002–70 and OST 90006–70, which govern these properties for bars and blanks of gas turbine engine blades. It is concluded that a series of measures are required to eliminate the residual porosity and impart the blade structure to the material to improve the strength properties.</description><subject>Alloy powders</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical composition</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Creep (materials)</subject><subject>Ductility tests</subject><subject>Exchange of Experience</subject><subject>Gas turbine engines</subject><subject>Gas-turbines</subject><subject>Glass</subject><subject>Hardness</subject><subject>High temperature</subject><subject>Industry standards</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metal products</subject><subject>Metallic Materials</subject><subject>Natural Materials</subject><subject>Particle size</subject><subject>Particle size distribution</subject><subject>Phase composition</subject><subject>Porosity</subject><subject>Powder metallurgy</subject><subject>Powders</subject><subject>Properties (attributes)</subject><subject>Rupture</subject><subject>Silicon</subject><subject>Sintering</subject><subject>Specialty metals industry</subject><subject>Strength</subject><subject>Titanium</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Vacuum sintering</subject><issn>1068-1302</issn><issn>1573-9066</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhhdRsFb_gKcFr02d2TTZ7LEUv6CgoD2HdDcpkW1SkyzFf290BW-SwwzheZKZtyiuEeYIUN9GRAROoAICgFiT40kxQVZT0gDnp7kHLghSqM6LixjfMwSwwEmxWfn9wUebrHez8jWFoU1D0LNSua58Cf6gQ7I6lt6Ur9YlHXSXm9623pGVd0lZZ92ufLNJOTvsy2Xf-894WZwZ1Ud99Vunxeb-7m31SNbPD0-r5Zq0lIlEFrTdAjKhqq1WrEFhoMkzAqsF1qJBo5RRrDMIjNMFgmZVo3XmGW5rwzs6LW7Gdw_Bfww6Jvnuh-Dyl7KiggrkwFim5iO1U72W1hmfgmrz6fT-exFtbL5fchS1YIxXWahGoQ0-xqCNPAS7V-FTIsjvvOWYt8x5y5-85TFLdJRiht1Oh79Z_rG-ALfQgqU</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Bykov, I. O.</creator><creator>Ovchinnikov, A. V.</creator><creator>Pavlenko, D. V.</creator><creator>Lechovitzer, Z. V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2020</creationdate><title>Composition, Structure, and Properties of Sintered Silicon-Containing Titanium Alloys</title><author>Bykov, I. O. ; Ovchinnikov, A. V. ; Pavlenko, D. V. ; Lechovitzer, Z. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-43cb0158a2bea5918f09130057817891faafa5df10563410e529ee58a51b7f6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alloy powders</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical composition</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Creep (materials)</topic><topic>Ductility tests</topic><topic>Exchange of Experience</topic><topic>Gas turbine engines</topic><topic>Gas-turbines</topic><topic>Glass</topic><topic>Hardness</topic><topic>High temperature</topic><topic>Industry standards</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metal products</topic><topic>Metallic Materials</topic><topic>Natural Materials</topic><topic>Particle size</topic><topic>Particle size distribution</topic><topic>Phase composition</topic><topic>Porosity</topic><topic>Powder metallurgy</topic><topic>Powders</topic><topic>Properties (attributes)</topic><topic>Rupture</topic><topic>Silicon</topic><topic>Sintering</topic><topic>Specialty metals industry</topic><topic>Strength</topic><topic>Titanium</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Vacuum sintering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bykov, I. O.</creatorcontrib><creatorcontrib>Ovchinnikov, A. V.</creatorcontrib><creatorcontrib>Pavlenko, D. V.</creatorcontrib><creatorcontrib>Lechovitzer, Z. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Powder metallurgy and metal ceramics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bykov, I. O.</au><au>Ovchinnikov, A. V.</au><au>Pavlenko, D. V.</au><au>Lechovitzer, Z. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composition, Structure, and Properties of Sintered Silicon-Containing Titanium Alloys</atitle><jtitle>Powder metallurgy and metal ceramics</jtitle><stitle>Powder Metall Met Ceram</stitle><date>2020</date><risdate>2020</risdate><volume>58</volume><issue>9-10</issue><spage>613</spage><epage>621</epage><pages>613-621</pages><issn>1068-1302</issn><eissn>1573-9066</eissn><abstract>The main factors limiting the application of high-temperature creep-rupture resistant titanium alloys synthesized from powder components by pressing and subsequent vacuum sintering for the manufacture of parts for gas turbine engines are analyzed. The method for synthesizing the VT1-0 alloy and an alloy whose chemical composition corresponds to the high-temperature creep-rupture resistant VT8 alloy is described. Their chemical and phase composition, strength, hardness, and distribution of doping elements are examined. Upon analysis of the composition, structure, and properties of the samples produced from the test alloys synthesized from PT5 titanium powders with different particle sizes by powder metallurgy methods, it was concluded that semi-finished products could be produced from the VT1-0 and VT8 titanium alloys. The effect of the particle size of the titanium matrix on the chemical composition of the synthesized alloys is studied. The chemical composition of the test alloy complies with the industry standard for semi-finished products of hightemperature creep-rupture resistant titanium alloys. The influence of the particle-size distribution of titanium powder on the strength, hardness, and residual porosity of the synthesized alloys is established. Regardless of the particle size of the powder mixture matrix (ranging from 40 to 400 μm), the strength, ductility, and hardness of the test VT8 alloy do not comply with the requirements of standards OST 90002–70 and OST 90006–70, which govern these properties for bars and blanks of gas turbine engine blades. It is concluded that a series of measures are required to eliminate the residual porosity and impart the blade structure to the material to improve the strength properties.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11106-020-00117-w</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1068-1302
ispartof Powder metallurgy and metal ceramics, 2020, Vol.58 (9-10), p.613-621
issn 1068-1302
1573-9066
language eng
recordid cdi_proquest_journals_2383816055
source SpringerLink Journals - AutoHoldings
subjects Alloy powders
Ceramics
Characterization and Evaluation of Materials
Chemical composition
Chemical synthesis
Chemistry and Materials Science
Composites
Creep (materials)
Ductility tests
Exchange of Experience
Gas turbine engines
Gas-turbines
Glass
Hardness
High temperature
Industry standards
Materials Science
Mechanical properties
Metal products
Metallic Materials
Natural Materials
Particle size
Particle size distribution
Phase composition
Porosity
Powder metallurgy
Powders
Properties (attributes)
Rupture
Silicon
Sintering
Specialty metals industry
Strength
Titanium
Titanium alloys
Titanium base alloys
Vacuum sintering
title Composition, Structure, and Properties of Sintered Silicon-Containing Titanium Alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A17%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composition,%20Structure,%20and%20Properties%20of%20Sintered%20Silicon-Containing%20Titanium%20Alloys&rft.jtitle=Powder%20metallurgy%20and%20metal%20ceramics&rft.au=Bykov,%20I.%20O.&rft.date=2020&rft.volume=58&rft.issue=9-10&rft.spage=613&rft.epage=621&rft.pages=613-621&rft.issn=1068-1302&rft.eissn=1573-9066&rft_id=info:doi/10.1007/s11106-020-00117-w&rft_dat=%3Cgale_proqu%3EA618785562%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2383816055&rft_id=info:pmid/&rft_galeid=A618785562&rfr_iscdi=true