Fatigue Resistance of 2219 Aluminum Alloy and its Welded Joints
The paper presents fatigue test results for 2219 aluminum alloy specimens, cut from a plate 40 mm in thickness, under symmetric and pulsating loading cycle. It is shown that at stresses for above the endurance limit, the fracture of specimens has a multi-site nature and starts from their surface. At...
Gespeichert in:
Veröffentlicht in: | Strength of materials 2019-11, Vol.51 (6), p.860-867 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 867 |
---|---|
container_issue | 6 |
container_start_page | 860 |
container_title | Strength of materials |
container_volume | 51 |
creator | Matokhnyuk, L. E. Byalonovich, A. V. Gopkalo, E. E. Vorob’ev, E. V. Karaush, D. P. Malyshko, V. I. |
description | The paper presents fatigue test results for 2219 aluminum alloy specimens, cut from a plate 40 mm in thickness, under symmetric and pulsating loading cycle. It is shown that at stresses for above the endurance limit, the fracture of specimens has a multi-site nature and starts from their surface. At stresses close to the endurance limit, the fatigue crack in the specimens fractured at a smaller number of loading cycles is initiated from their surface and at longer lives, from subsurface fracture initiation sites. This accounts for the significant scatter of data on the life of specimens near the endurance limit. Fatigue tests under zero-to-tension loading cycle showed that under the same heat treatment conditions, the endurance limit value of specimens made by resistance butt welding is close to that of specimens without weld and much higher than that of specimens with argon-arc weld. The fractographic investigations of the fracture of specimens with weld show that in both types of welding, the fatigue cracks propagate through pores in the weld or in the heat-affected zone. |
doi_str_mv | 10.1007/s11223-020-00136-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2383815664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A618785151</galeid><sourcerecordid>A618785151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-bbe986fc2b987a38b34819481146533e12c35c29778de85c3eb522bb1ec6630d3</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMouH78AU8FTx66ZjKbND3JIn4iCKviMaTpdIl0W21S0H9vtIJ4kTAkDM8zE3gZOwI-B86L0wAgBOZc8JxzQJXjFpuBLDAvUchtNuMcy1wgqF22F8IL51wD6hk7u7TRr0fKVhR8iLZzlPVNJgSU2bIdN74bN-nR9h-Z7erMx5A9U1tTnd32vovhgO00tg10-HPvs6fLi8fz6_zu_urmfHmXOyxFzKuKSq0aJ6pSFxZ1hQsNZSpYKIlIIBxKJ8qi0DVp6ZAqKURVATmlkNe4z46nua9D_zZSiOalH4curTQCNWqQSi0SNZ-otW3J-K7p42BdOjVtvOs7anzqLxXoQkuQkISTP0JiIr3HtR1DMDcPq7-smFg39CEM1JjXwW_s8GGAm68UzJSCSSmY7xQMJgknKSS4W9Pw--9_rE-Jb4Xf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383815664</pqid></control><display><type>article</type><title>Fatigue Resistance of 2219 Aluminum Alloy and its Welded Joints</title><source>SpringerLink Journals - AutoHoldings</source><creator>Matokhnyuk, L. E. ; Byalonovich, A. V. ; Gopkalo, E. E. ; Vorob’ev, E. V. ; Karaush, D. P. ; Malyshko, V. I.</creator><creatorcontrib>Matokhnyuk, L. E. ; Byalonovich, A. V. ; Gopkalo, E. E. ; Vorob’ev, E. V. ; Karaush, D. P. ; Malyshko, V. I.</creatorcontrib><description>The paper presents fatigue test results for 2219 aluminum alloy specimens, cut from a plate 40 mm in thickness, under symmetric and pulsating loading cycle. It is shown that at stresses for above the endurance limit, the fracture of specimens has a multi-site nature and starts from their surface. At stresses close to the endurance limit, the fatigue crack in the specimens fractured at a smaller number of loading cycles is initiated from their surface and at longer lives, from subsurface fracture initiation sites. This accounts for the significant scatter of data on the life of specimens near the endurance limit. Fatigue tests under zero-to-tension loading cycle showed that under the same heat treatment conditions, the endurance limit value of specimens made by resistance butt welding is close to that of specimens without weld and much higher than that of specimens with argon-arc weld. The fractographic investigations of the fracture of specimens with weld show that in both types of welding, the fatigue cracks propagate through pores in the weld or in the heat-affected zone.</description><identifier>ISSN: 0039-2316</identifier><identifier>EISSN: 1573-9325</identifier><identifier>DOI: 10.1007/s11223-020-00136-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum ; Aluminum alloys ; Aluminum base alloys ; Arc welding ; Argon ; Butt welding ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crack initiation ; Crack propagation ; Fatigue ; Fatigue cracks ; Fatigue failure ; Fatigue strength ; Fatigue testing machines ; Fatigue tests ; Fracture mechanics ; Heat affected zone ; Heat treatment ; Materials ; Materials Science ; Resistance welding ; Solid Mechanics ; Specialty metals industry ; Stresses ; Welded joints ; Welding</subject><ispartof>Strength of materials, 2019-11, Vol.51 (6), p.860-867</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2019 Springer</rights><rights>2020© Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-bbe986fc2b987a38b34819481146533e12c35c29778de85c3eb522bb1ec6630d3</citedby><cites>FETCH-LOGICAL-c392t-bbe986fc2b987a38b34819481146533e12c35c29778de85c3eb522bb1ec6630d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11223-020-00136-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11223-020-00136-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Matokhnyuk, L. E.</creatorcontrib><creatorcontrib>Byalonovich, A. V.</creatorcontrib><creatorcontrib>Gopkalo, E. E.</creatorcontrib><creatorcontrib>Vorob’ev, E. V.</creatorcontrib><creatorcontrib>Karaush, D. P.</creatorcontrib><creatorcontrib>Malyshko, V. I.</creatorcontrib><title>Fatigue Resistance of 2219 Aluminum Alloy and its Welded Joints</title><title>Strength of materials</title><addtitle>Strength Mater</addtitle><description>The paper presents fatigue test results for 2219 aluminum alloy specimens, cut from a plate 40 mm in thickness, under symmetric and pulsating loading cycle. It is shown that at stresses for above the endurance limit, the fracture of specimens has a multi-site nature and starts from their surface. At stresses close to the endurance limit, the fatigue crack in the specimens fractured at a smaller number of loading cycles is initiated from their surface and at longer lives, from subsurface fracture initiation sites. This accounts for the significant scatter of data on the life of specimens near the endurance limit. Fatigue tests under zero-to-tension loading cycle showed that under the same heat treatment conditions, the endurance limit value of specimens made by resistance butt welding is close to that of specimens without weld and much higher than that of specimens with argon-arc weld. The fractographic investigations of the fracture of specimens with weld show that in both types of welding, the fatigue cracks propagate through pores in the weld or in the heat-affected zone.</description><subject>Aluminum</subject><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Arc welding</subject><subject>Argon</subject><subject>Butt welding</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Fatigue</subject><subject>Fatigue cracks</subject><subject>Fatigue failure</subject><subject>Fatigue strength</subject><subject>Fatigue testing machines</subject><subject>Fatigue tests</subject><subject>Fracture mechanics</subject><subject>Heat affected zone</subject><subject>Heat treatment</subject><subject>Materials</subject><subject>Materials Science</subject><subject>Resistance welding</subject><subject>Solid Mechanics</subject><subject>Specialty metals industry</subject><subject>Stresses</subject><subject>Welded joints</subject><subject>Welding</subject><issn>0039-2316</issn><issn>1573-9325</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LxDAQhoMouH78AU8FTx66ZjKbND3JIn4iCKviMaTpdIl0W21S0H9vtIJ4kTAkDM8zE3gZOwI-B86L0wAgBOZc8JxzQJXjFpuBLDAvUchtNuMcy1wgqF22F8IL51wD6hk7u7TRr0fKVhR8iLZzlPVNJgSU2bIdN74bN-nR9h-Z7erMx5A9U1tTnd32vovhgO00tg10-HPvs6fLi8fz6_zu_urmfHmXOyxFzKuKSq0aJ6pSFxZ1hQsNZSpYKIlIIBxKJ8qi0DVp6ZAqKURVATmlkNe4z46nua9D_zZSiOalH4curTQCNWqQSi0SNZ-otW3J-K7p42BdOjVtvOs7anzqLxXoQkuQkISTP0JiIr3HtR1DMDcPq7-smFg39CEM1JjXwW_s8GGAm68UzJSCSSmY7xQMJgknKSS4W9Pw--9_rE-Jb4Xf</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Matokhnyuk, L. E.</creator><creator>Byalonovich, A. V.</creator><creator>Gopkalo, E. E.</creator><creator>Vorob’ev, E. V.</creator><creator>Karaush, D. P.</creator><creator>Malyshko, V. I.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20191101</creationdate><title>Fatigue Resistance of 2219 Aluminum Alloy and its Welded Joints</title><author>Matokhnyuk, L. E. ; Byalonovich, A. V. ; Gopkalo, E. E. ; Vorob’ev, E. V. ; Karaush, D. P. ; Malyshko, V. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-bbe986fc2b987a38b34819481146533e12c35c29778de85c3eb522bb1ec6630d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum</topic><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Arc welding</topic><topic>Argon</topic><topic>Butt welding</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Fatigue</topic><topic>Fatigue cracks</topic><topic>Fatigue failure</topic><topic>Fatigue strength</topic><topic>Fatigue testing machines</topic><topic>Fatigue tests</topic><topic>Fracture mechanics</topic><topic>Heat affected zone</topic><topic>Heat treatment</topic><topic>Materials</topic><topic>Materials Science</topic><topic>Resistance welding</topic><topic>Solid Mechanics</topic><topic>Specialty metals industry</topic><topic>Stresses</topic><topic>Welded joints</topic><topic>Welding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matokhnyuk, L. E.</creatorcontrib><creatorcontrib>Byalonovich, A. V.</creatorcontrib><creatorcontrib>Gopkalo, E. E.</creatorcontrib><creatorcontrib>Vorob’ev, E. V.</creatorcontrib><creatorcontrib>Karaush, D. P.</creatorcontrib><creatorcontrib>Malyshko, V. I.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Strength of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matokhnyuk, L. E.</au><au>Byalonovich, A. V.</au><au>Gopkalo, E. E.</au><au>Vorob’ev, E. V.</au><au>Karaush, D. P.</au><au>Malyshko, V. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue Resistance of 2219 Aluminum Alloy and its Welded Joints</atitle><jtitle>Strength of materials</jtitle><stitle>Strength Mater</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>51</volume><issue>6</issue><spage>860</spage><epage>867</epage><pages>860-867</pages><issn>0039-2316</issn><eissn>1573-9325</eissn><abstract>The paper presents fatigue test results for 2219 aluminum alloy specimens, cut from a plate 40 mm in thickness, under symmetric and pulsating loading cycle. It is shown that at stresses for above the endurance limit, the fracture of specimens has a multi-site nature and starts from their surface. At stresses close to the endurance limit, the fatigue crack in the specimens fractured at a smaller number of loading cycles is initiated from their surface and at longer lives, from subsurface fracture initiation sites. This accounts for the significant scatter of data on the life of specimens near the endurance limit. Fatigue tests under zero-to-tension loading cycle showed that under the same heat treatment conditions, the endurance limit value of specimens made by resistance butt welding is close to that of specimens without weld and much higher than that of specimens with argon-arc weld. The fractographic investigations of the fracture of specimens with weld show that in both types of welding, the fatigue cracks propagate through pores in the weld or in the heat-affected zone.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11223-020-00136-3</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-2316 |
ispartof | Strength of materials, 2019-11, Vol.51 (6), p.860-867 |
issn | 0039-2316 1573-9325 |
language | eng |
recordid | cdi_proquest_journals_2383815664 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aluminum Aluminum alloys Aluminum base alloys Arc welding Argon Butt welding Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Crack initiation Crack propagation Fatigue Fatigue cracks Fatigue failure Fatigue strength Fatigue testing machines Fatigue tests Fracture mechanics Heat affected zone Heat treatment Materials Materials Science Resistance welding Solid Mechanics Specialty metals industry Stresses Welded joints Welding |
title | Fatigue Resistance of 2219 Aluminum Alloy and its Welded Joints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A34%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue%20Resistance%20of%202219%20Aluminum%20Alloy%20and%20its%20Welded%20Joints&rft.jtitle=Strength%20of%20materials&rft.au=Matokhnyuk,%20L.%20E.&rft.date=2019-11-01&rft.volume=51&rft.issue=6&rft.spage=860&rft.epage=867&rft.pages=860-867&rft.issn=0039-2316&rft.eissn=1573-9325&rft_id=info:doi/10.1007/s11223-020-00136-3&rft_dat=%3Cgale_proqu%3EA618785151%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2383815664&rft_id=info:pmid/&rft_galeid=A618785151&rfr_iscdi=true |