Fatigue Resistance of 2219 Aluminum Alloy and its Welded Joints

The paper presents fatigue test results for 2219 aluminum alloy specimens, cut from a plate 40 mm in thickness, under symmetric and pulsating loading cycle. It is shown that at stresses for above the endurance limit, the fracture of specimens has a multi-site nature and starts from their surface. At...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Strength of materials 2019-11, Vol.51 (6), p.860-867
Hauptverfasser: Matokhnyuk, L. E., Byalonovich, A. V., Gopkalo, E. E., Vorob’ev, E. V., Karaush, D. P., Malyshko, V. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 867
container_issue 6
container_start_page 860
container_title Strength of materials
container_volume 51
creator Matokhnyuk, L. E.
Byalonovich, A. V.
Gopkalo, E. E.
Vorob’ev, E. V.
Karaush, D. P.
Malyshko, V. I.
description The paper presents fatigue test results for 2219 aluminum alloy specimens, cut from a plate 40 mm in thickness, under symmetric and pulsating loading cycle. It is shown that at stresses for above the endurance limit, the fracture of specimens has a multi-site nature and starts from their surface. At stresses close to the endurance limit, the fatigue crack in the specimens fractured at a smaller number of loading cycles is initiated from their surface and at longer lives, from subsurface fracture initiation sites. This accounts for the significant scatter of data on the life of specimens near the endurance limit. Fatigue tests under zero-to-tension loading cycle showed that under the same heat treatment conditions, the endurance limit value of specimens made by resistance butt welding is close to that of specimens without weld and much higher than that of specimens with argon-arc weld. The fractographic investigations of the fracture of specimens with weld show that in both types of welding, the fatigue cracks propagate through pores in the weld or in the heat-affected zone.
doi_str_mv 10.1007/s11223-020-00136-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2383815664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A618785151</galeid><sourcerecordid>A618785151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-bbe986fc2b987a38b34819481146533e12c35c29778de85c3eb522bb1ec6630d3</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMouH78AU8FTx66ZjKbND3JIn4iCKviMaTpdIl0W21S0H9vtIJ4kTAkDM8zE3gZOwI-B86L0wAgBOZc8JxzQJXjFpuBLDAvUchtNuMcy1wgqF22F8IL51wD6hk7u7TRr0fKVhR8iLZzlPVNJgSU2bIdN74bN-nR9h-Z7erMx5A9U1tTnd32vovhgO00tg10-HPvs6fLi8fz6_zu_urmfHmXOyxFzKuKSq0aJ6pSFxZ1hQsNZSpYKIlIIBxKJ8qi0DVp6ZAqKURVATmlkNe4z46nua9D_zZSiOalH4curTQCNWqQSi0SNZ-otW3J-K7p42BdOjVtvOs7anzqLxXoQkuQkISTP0JiIr3HtR1DMDcPq7-smFg39CEM1JjXwW_s8GGAm68UzJSCSSmY7xQMJgknKSS4W9Pw--9_rE-Jb4Xf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383815664</pqid></control><display><type>article</type><title>Fatigue Resistance of 2219 Aluminum Alloy and its Welded Joints</title><source>SpringerLink Journals - AutoHoldings</source><creator>Matokhnyuk, L. E. ; Byalonovich, A. V. ; Gopkalo, E. E. ; Vorob’ev, E. V. ; Karaush, D. P. ; Malyshko, V. I.</creator><creatorcontrib>Matokhnyuk, L. E. ; Byalonovich, A. V. ; Gopkalo, E. E. ; Vorob’ev, E. V. ; Karaush, D. P. ; Malyshko, V. I.</creatorcontrib><description>The paper presents fatigue test results for 2219 aluminum alloy specimens, cut from a plate 40 mm in thickness, under symmetric and pulsating loading cycle. It is shown that at stresses for above the endurance limit, the fracture of specimens has a multi-site nature and starts from their surface. At stresses close to the endurance limit, the fatigue crack in the specimens fractured at a smaller number of loading cycles is initiated from their surface and at longer lives, from subsurface fracture initiation sites. This accounts for the significant scatter of data on the life of specimens near the endurance limit. Fatigue tests under zero-to-tension loading cycle showed that under the same heat treatment conditions, the endurance limit value of specimens made by resistance butt welding is close to that of specimens without weld and much higher than that of specimens with argon-arc weld. The fractographic investigations of the fracture of specimens with weld show that in both types of welding, the fatigue cracks propagate through pores in the weld or in the heat-affected zone.</description><identifier>ISSN: 0039-2316</identifier><identifier>EISSN: 1573-9325</identifier><identifier>DOI: 10.1007/s11223-020-00136-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum ; Aluminum alloys ; Aluminum base alloys ; Arc welding ; Argon ; Butt welding ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crack initiation ; Crack propagation ; Fatigue ; Fatigue cracks ; Fatigue failure ; Fatigue strength ; Fatigue testing machines ; Fatigue tests ; Fracture mechanics ; Heat affected zone ; Heat treatment ; Materials ; Materials Science ; Resistance welding ; Solid Mechanics ; Specialty metals industry ; Stresses ; Welded joints ; Welding</subject><ispartof>Strength of materials, 2019-11, Vol.51 (6), p.860-867</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2019 Springer</rights><rights>2020© Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-bbe986fc2b987a38b34819481146533e12c35c29778de85c3eb522bb1ec6630d3</citedby><cites>FETCH-LOGICAL-c392t-bbe986fc2b987a38b34819481146533e12c35c29778de85c3eb522bb1ec6630d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11223-020-00136-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11223-020-00136-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Matokhnyuk, L. E.</creatorcontrib><creatorcontrib>Byalonovich, A. V.</creatorcontrib><creatorcontrib>Gopkalo, E. E.</creatorcontrib><creatorcontrib>Vorob’ev, E. V.</creatorcontrib><creatorcontrib>Karaush, D. P.</creatorcontrib><creatorcontrib>Malyshko, V. I.</creatorcontrib><title>Fatigue Resistance of 2219 Aluminum Alloy and its Welded Joints</title><title>Strength of materials</title><addtitle>Strength Mater</addtitle><description>The paper presents fatigue test results for 2219 aluminum alloy specimens, cut from a plate 40 mm in thickness, under symmetric and pulsating loading cycle. It is shown that at stresses for above the endurance limit, the fracture of specimens has a multi-site nature and starts from their surface. At stresses close to the endurance limit, the fatigue crack in the specimens fractured at a smaller number of loading cycles is initiated from their surface and at longer lives, from subsurface fracture initiation sites. This accounts for the significant scatter of data on the life of specimens near the endurance limit. Fatigue tests under zero-to-tension loading cycle showed that under the same heat treatment conditions, the endurance limit value of specimens made by resistance butt welding is close to that of specimens without weld and much higher than that of specimens with argon-arc weld. The fractographic investigations of the fracture of specimens with weld show that in both types of welding, the fatigue cracks propagate through pores in the weld or in the heat-affected zone.</description><subject>Aluminum</subject><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Arc welding</subject><subject>Argon</subject><subject>Butt welding</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Fatigue</subject><subject>Fatigue cracks</subject><subject>Fatigue failure</subject><subject>Fatigue strength</subject><subject>Fatigue testing machines</subject><subject>Fatigue tests</subject><subject>Fracture mechanics</subject><subject>Heat affected zone</subject><subject>Heat treatment</subject><subject>Materials</subject><subject>Materials Science</subject><subject>Resistance welding</subject><subject>Solid Mechanics</subject><subject>Specialty metals industry</subject><subject>Stresses</subject><subject>Welded joints</subject><subject>Welding</subject><issn>0039-2316</issn><issn>1573-9325</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LxDAQhoMouH78AU8FTx66ZjKbND3JIn4iCKviMaTpdIl0W21S0H9vtIJ4kTAkDM8zE3gZOwI-B86L0wAgBOZc8JxzQJXjFpuBLDAvUchtNuMcy1wgqF22F8IL51wD6hk7u7TRr0fKVhR8iLZzlPVNJgSU2bIdN74bN-nR9h-Z7erMx5A9U1tTnd32vovhgO00tg10-HPvs6fLi8fz6_zu_urmfHmXOyxFzKuKSq0aJ6pSFxZ1hQsNZSpYKIlIIBxKJ8qi0DVp6ZAqKURVATmlkNe4z46nua9D_zZSiOalH4curTQCNWqQSi0SNZ-otW3J-K7p42BdOjVtvOs7anzqLxXoQkuQkISTP0JiIr3HtR1DMDcPq7-smFg39CEM1JjXwW_s8GGAm68UzJSCSSmY7xQMJgknKSS4W9Pw--9_rE-Jb4Xf</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Matokhnyuk, L. E.</creator><creator>Byalonovich, A. V.</creator><creator>Gopkalo, E. E.</creator><creator>Vorob’ev, E. V.</creator><creator>Karaush, D. P.</creator><creator>Malyshko, V. I.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20191101</creationdate><title>Fatigue Resistance of 2219 Aluminum Alloy and its Welded Joints</title><author>Matokhnyuk, L. E. ; Byalonovich, A. V. ; Gopkalo, E. E. ; Vorob’ev, E. V. ; Karaush, D. P. ; Malyshko, V. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-bbe986fc2b987a38b34819481146533e12c35c29778de85c3eb522bb1ec6630d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum</topic><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Arc welding</topic><topic>Argon</topic><topic>Butt welding</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Fatigue</topic><topic>Fatigue cracks</topic><topic>Fatigue failure</topic><topic>Fatigue strength</topic><topic>Fatigue testing machines</topic><topic>Fatigue tests</topic><topic>Fracture mechanics</topic><topic>Heat affected zone</topic><topic>Heat treatment</topic><topic>Materials</topic><topic>Materials Science</topic><topic>Resistance welding</topic><topic>Solid Mechanics</topic><topic>Specialty metals industry</topic><topic>Stresses</topic><topic>Welded joints</topic><topic>Welding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matokhnyuk, L. E.</creatorcontrib><creatorcontrib>Byalonovich, A. V.</creatorcontrib><creatorcontrib>Gopkalo, E. E.</creatorcontrib><creatorcontrib>Vorob’ev, E. V.</creatorcontrib><creatorcontrib>Karaush, D. P.</creatorcontrib><creatorcontrib>Malyshko, V. I.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Strength of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matokhnyuk, L. E.</au><au>Byalonovich, A. V.</au><au>Gopkalo, E. E.</au><au>Vorob’ev, E. V.</au><au>Karaush, D. P.</au><au>Malyshko, V. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue Resistance of 2219 Aluminum Alloy and its Welded Joints</atitle><jtitle>Strength of materials</jtitle><stitle>Strength Mater</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>51</volume><issue>6</issue><spage>860</spage><epage>867</epage><pages>860-867</pages><issn>0039-2316</issn><eissn>1573-9325</eissn><abstract>The paper presents fatigue test results for 2219 aluminum alloy specimens, cut from a plate 40 mm in thickness, under symmetric and pulsating loading cycle. It is shown that at stresses for above the endurance limit, the fracture of specimens has a multi-site nature and starts from their surface. At stresses close to the endurance limit, the fatigue crack in the specimens fractured at a smaller number of loading cycles is initiated from their surface and at longer lives, from subsurface fracture initiation sites. This accounts for the significant scatter of data on the life of specimens near the endurance limit. Fatigue tests under zero-to-tension loading cycle showed that under the same heat treatment conditions, the endurance limit value of specimens made by resistance butt welding is close to that of specimens without weld and much higher than that of specimens with argon-arc weld. The fractographic investigations of the fracture of specimens with weld show that in both types of welding, the fatigue cracks propagate through pores in the weld or in the heat-affected zone.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11223-020-00136-3</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0039-2316
ispartof Strength of materials, 2019-11, Vol.51 (6), p.860-867
issn 0039-2316
1573-9325
language eng
recordid cdi_proquest_journals_2383815664
source SpringerLink Journals - AutoHoldings
subjects Aluminum
Aluminum alloys
Aluminum base alloys
Arc welding
Argon
Butt welding
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Crack initiation
Crack propagation
Fatigue
Fatigue cracks
Fatigue failure
Fatigue strength
Fatigue testing machines
Fatigue tests
Fracture mechanics
Heat affected zone
Heat treatment
Materials
Materials Science
Resistance welding
Solid Mechanics
Specialty metals industry
Stresses
Welded joints
Welding
title Fatigue Resistance of 2219 Aluminum Alloy and its Welded Joints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A34%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue%20Resistance%20of%202219%20Aluminum%20Alloy%20and%20its%20Welded%20Joints&rft.jtitle=Strength%20of%20materials&rft.au=Matokhnyuk,%20L.%20E.&rft.date=2019-11-01&rft.volume=51&rft.issue=6&rft.spage=860&rft.epage=867&rft.pages=860-867&rft.issn=0039-2316&rft.eissn=1573-9325&rft_id=info:doi/10.1007/s11223-020-00136-3&rft_dat=%3Cgale_proqu%3EA618785151%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2383815664&rft_id=info:pmid/&rft_galeid=A618785151&rfr_iscdi=true