Isoconversional kinetic analysis of thermal decomposition of 1-butyl-3-methylimidazolium hexafluorophosphate under inert nitrogen and oxidative air atmospheres

Non-isothermal decomposition of 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim]PF 6 ) in inert nitrogen and air atmospheres was investigated by means of multiple heating-rate thermogravimetric analysis. The results obtained under the heating rates of 5–20 K min −1 show that the [bmim]PF 6 py...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2020-04, Vol.140 (2), p.695-712
Hauptverfasser: Huang, Zhen, Wang, Xiao-jie, Lu, Tao, Nong, Dan-dan, Gao, Xin-yang, Zhao, Jun-xu, Wei, Meng-yu, Teng, Li-jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 712
container_issue 2
container_start_page 695
container_title Journal of thermal analysis and calorimetry
container_volume 140
creator Huang, Zhen
Wang, Xiao-jie
Lu, Tao
Nong, Dan-dan
Gao, Xin-yang
Zhao, Jun-xu
Wei, Meng-yu
Teng, Li-jun
description Non-isothermal decomposition of 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim]PF 6 ) in inert nitrogen and air atmospheres was investigated by means of multiple heating-rate thermogravimetric analysis. The results obtained under the heating rates of 5–20 K min −1 show that the [bmim]PF 6 pyrolysis mainly occurred from 600 to 800 K and its oxidative thermal decomposition mainly from 550 to 750 K. Kinetic thermal decomposition processes have been analyzed with differential Friedman method and three integral Flynn–Wall–Ozawa, Coats–Redfern and Vyazovkin–Dollimore methods. Through these model-free isoconversional methods, the activation energy and pre-exponential factor over the entire conversion range have been successfully estimated. By using the Coats–Redfern method, the diffusion-controlled D5 model is found to be the best reaction mechanism function for describing two-stage pyrolysis and one-stage oxidative thermal decomposition and leads to very satisfactory calculation performances. The short-term stability and long-term thermal stability are discussed as well.
doi_str_mv 10.1007/s10973-019-08845-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2383542130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A618697068</galeid><sourcerecordid>A618697068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-3655fca875a388d1e9e280126cd6ee49ccbff04ba4ecf55f693535bd03a092863</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxiMEEqXwApwsceLgYseJ1z5WFZSVKiHx52x5nfHGJYmD7VRZXoZXZZYgoV6QDx57ft-MPV9VvebsijO2e5c50ztBGdeUKdW0dH1SXfBWKVrrWj7FWGAsecueVy9yvmeMac34RfVrn6OL0wOkHOJkB_I9TFCCIxYPpxwyiZ6UHtKIuQ5cHOeYQ0H2nOD0sJTTQAUdofSnIYyhsz_jEJaR9LBaPywxxbmPee5tAbJMHSSCHVIhUygpHmHCTh2JKwpLeABiQyK2jGcFJMgvq2feDhle_d0vq28f3n-9-UjvPt3ub67vqGtqXaiQbeudVbvW4kc7DhpqxXgtXScBGu3cwXvWHGwDziMqtWhFe-iYsEzXSorL6s1Wd07xxwK5mPu4JJxBNrVQom1qLhhSVxt1tAOYMPlYknW4OhgDjhF8wPtryZXUOyYVCt4-EiBTYC1Hu-Rs9l8-P2brjXUp5pzAmzmF0aaT4cycXTabywZdNn9cNiuKxCbKCE9HSP_e_R_Vb3T1r3o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383542130</pqid></control><display><type>article</type><title>Isoconversional kinetic analysis of thermal decomposition of 1-butyl-3-methylimidazolium hexafluorophosphate under inert nitrogen and oxidative air atmospheres</title><source>SpringerNature Journals</source><creator>Huang, Zhen ; Wang, Xiao-jie ; Lu, Tao ; Nong, Dan-dan ; Gao, Xin-yang ; Zhao, Jun-xu ; Wei, Meng-yu ; Teng, Li-jun</creator><creatorcontrib>Huang, Zhen ; Wang, Xiao-jie ; Lu, Tao ; Nong, Dan-dan ; Gao, Xin-yang ; Zhao, Jun-xu ; Wei, Meng-yu ; Teng, Li-jun</creatorcontrib><description>Non-isothermal decomposition of 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim]PF 6 ) in inert nitrogen and air atmospheres was investigated by means of multiple heating-rate thermogravimetric analysis. The results obtained under the heating rates of 5–20 K min −1 show that the [bmim]PF 6 pyrolysis mainly occurred from 600 to 800 K and its oxidative thermal decomposition mainly from 550 to 750 K. Kinetic thermal decomposition processes have been analyzed with differential Friedman method and three integral Flynn–Wall–Ozawa, Coats–Redfern and Vyazovkin–Dollimore methods. Through these model-free isoconversional methods, the activation energy and pre-exponential factor over the entire conversion range have been successfully estimated. By using the Coats–Redfern method, the diffusion-controlled D5 model is found to be the best reaction mechanism function for describing two-stage pyrolysis and one-stage oxidative thermal decomposition and leads to very satisfactory calculation performances. The short-term stability and long-term thermal stability are discussed as well.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-019-08845-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Activation energy ; Analysis ; Analytical Chemistry ; Atmospheres ; Chemistry ; Chemistry and Materials Science ; Decomposition ; Differential thermal analysis ; Fluorides ; Heating ; Inorganic Chemistry ; Measurement Science and Instrumentation ; Physical Chemistry ; Polymer Sciences ; Pyrolysis ; Reaction mechanisms ; Thermal decomposition ; Thermal stability ; Thermogravimetric analysis</subject><ispartof>Journal of thermal analysis and calorimetry, 2020-04, Vol.140 (2), p.695-712</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>2019© Akadémiai Kiadó, Budapest, Hungary 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-3655fca875a388d1e9e280126cd6ee49ccbff04ba4ecf55f693535bd03a092863</citedby><cites>FETCH-LOGICAL-c429t-3655fca875a388d1e9e280126cd6ee49ccbff04ba4ecf55f693535bd03a092863</cites><orcidid>0000-0002-3920-4882</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-019-08845-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-019-08845-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Huang, Zhen</creatorcontrib><creatorcontrib>Wang, Xiao-jie</creatorcontrib><creatorcontrib>Lu, Tao</creatorcontrib><creatorcontrib>Nong, Dan-dan</creatorcontrib><creatorcontrib>Gao, Xin-yang</creatorcontrib><creatorcontrib>Zhao, Jun-xu</creatorcontrib><creatorcontrib>Wei, Meng-yu</creatorcontrib><creatorcontrib>Teng, Li-jun</creatorcontrib><title>Isoconversional kinetic analysis of thermal decomposition of 1-butyl-3-methylimidazolium hexafluorophosphate under inert nitrogen and oxidative air atmospheres</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>Non-isothermal decomposition of 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim]PF 6 ) in inert nitrogen and air atmospheres was investigated by means of multiple heating-rate thermogravimetric analysis. The results obtained under the heating rates of 5–20 K min −1 show that the [bmim]PF 6 pyrolysis mainly occurred from 600 to 800 K and its oxidative thermal decomposition mainly from 550 to 750 K. Kinetic thermal decomposition processes have been analyzed with differential Friedman method and three integral Flynn–Wall–Ozawa, Coats–Redfern and Vyazovkin–Dollimore methods. Through these model-free isoconversional methods, the activation energy and pre-exponential factor over the entire conversion range have been successfully estimated. By using the Coats–Redfern method, the diffusion-controlled D5 model is found to be the best reaction mechanism function for describing two-stage pyrolysis and one-stage oxidative thermal decomposition and leads to very satisfactory calculation performances. The short-term stability and long-term thermal stability are discussed as well.</description><subject>Activation energy</subject><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Atmospheres</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Decomposition</subject><subject>Differential thermal analysis</subject><subject>Fluorides</subject><subject>Heating</subject><subject>Inorganic Chemistry</subject><subject>Measurement Science and Instrumentation</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Pyrolysis</subject><subject>Reaction mechanisms</subject><subject>Thermal decomposition</subject><subject>Thermal stability</subject><subject>Thermogravimetric analysis</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc9u1DAQxiMEEqXwApwsceLgYseJ1z5WFZSVKiHx52x5nfHGJYmD7VRZXoZXZZYgoV6QDx57ft-MPV9VvebsijO2e5c50ztBGdeUKdW0dH1SXfBWKVrrWj7FWGAsecueVy9yvmeMac34RfVrn6OL0wOkHOJkB_I9TFCCIxYPpxwyiZ6UHtKIuQ5cHOeYQ0H2nOD0sJTTQAUdofSnIYyhsz_jEJaR9LBaPywxxbmPee5tAbJMHSSCHVIhUygpHmHCTh2JKwpLeABiQyK2jGcFJMgvq2feDhle_d0vq28f3n-9-UjvPt3ub67vqGtqXaiQbeudVbvW4kc7DhpqxXgtXScBGu3cwXvWHGwDziMqtWhFe-iYsEzXSorL6s1Wd07xxwK5mPu4JJxBNrVQom1qLhhSVxt1tAOYMPlYknW4OhgDjhF8wPtryZXUOyYVCt4-EiBTYC1Hu-Rs9l8-P2brjXUp5pzAmzmF0aaT4cycXTabywZdNn9cNiuKxCbKCE9HSP_e_R_Vb3T1r3o</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Huang, Zhen</creator><creator>Wang, Xiao-jie</creator><creator>Lu, Tao</creator><creator>Nong, Dan-dan</creator><creator>Gao, Xin-yang</creator><creator>Zhao, Jun-xu</creator><creator>Wei, Meng-yu</creator><creator>Teng, Li-jun</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><orcidid>https://orcid.org/0000-0002-3920-4882</orcidid></search><sort><creationdate>20200401</creationdate><title>Isoconversional kinetic analysis of thermal decomposition of 1-butyl-3-methylimidazolium hexafluorophosphate under inert nitrogen and oxidative air atmospheres</title><author>Huang, Zhen ; Wang, Xiao-jie ; Lu, Tao ; Nong, Dan-dan ; Gao, Xin-yang ; Zhao, Jun-xu ; Wei, Meng-yu ; Teng, Li-jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-3655fca875a388d1e9e280126cd6ee49ccbff04ba4ecf55f693535bd03a092863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activation energy</topic><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Atmospheres</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Decomposition</topic><topic>Differential thermal analysis</topic><topic>Fluorides</topic><topic>Heating</topic><topic>Inorganic Chemistry</topic><topic>Measurement Science and Instrumentation</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Pyrolysis</topic><topic>Reaction mechanisms</topic><topic>Thermal decomposition</topic><topic>Thermal stability</topic><topic>Thermogravimetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Zhen</creatorcontrib><creatorcontrib>Wang, Xiao-jie</creatorcontrib><creatorcontrib>Lu, Tao</creatorcontrib><creatorcontrib>Nong, Dan-dan</creatorcontrib><creatorcontrib>Gao, Xin-yang</creatorcontrib><creatorcontrib>Zhao, Jun-xu</creatorcontrib><creatorcontrib>Wei, Meng-yu</creatorcontrib><creatorcontrib>Teng, Li-jun</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Zhen</au><au>Wang, Xiao-jie</au><au>Lu, Tao</au><au>Nong, Dan-dan</au><au>Gao, Xin-yang</au><au>Zhao, Jun-xu</au><au>Wei, Meng-yu</au><au>Teng, Li-jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isoconversional kinetic analysis of thermal decomposition of 1-butyl-3-methylimidazolium hexafluorophosphate under inert nitrogen and oxidative air atmospheres</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>140</volume><issue>2</issue><spage>695</spage><epage>712</epage><pages>695-712</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>Non-isothermal decomposition of 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim]PF 6 ) in inert nitrogen and air atmospheres was investigated by means of multiple heating-rate thermogravimetric analysis. The results obtained under the heating rates of 5–20 K min −1 show that the [bmim]PF 6 pyrolysis mainly occurred from 600 to 800 K and its oxidative thermal decomposition mainly from 550 to 750 K. Kinetic thermal decomposition processes have been analyzed with differential Friedman method and three integral Flynn–Wall–Ozawa, Coats–Redfern and Vyazovkin–Dollimore methods. Through these model-free isoconversional methods, the activation energy and pre-exponential factor over the entire conversion range have been successfully estimated. By using the Coats–Redfern method, the diffusion-controlled D5 model is found to be the best reaction mechanism function for describing two-stage pyrolysis and one-stage oxidative thermal decomposition and leads to very satisfactory calculation performances. The short-term stability and long-term thermal stability are discussed as well.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-019-08845-x</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-3920-4882</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2020-04, Vol.140 (2), p.695-712
issn 1388-6150
1588-2926
language eng
recordid cdi_proquest_journals_2383542130
source SpringerNature Journals
subjects Activation energy
Analysis
Analytical Chemistry
Atmospheres
Chemistry
Chemistry and Materials Science
Decomposition
Differential thermal analysis
Fluorides
Heating
Inorganic Chemistry
Measurement Science and Instrumentation
Physical Chemistry
Polymer Sciences
Pyrolysis
Reaction mechanisms
Thermal decomposition
Thermal stability
Thermogravimetric analysis
title Isoconversional kinetic analysis of thermal decomposition of 1-butyl-3-methylimidazolium hexafluorophosphate under inert nitrogen and oxidative air atmospheres
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T12%3A48%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isoconversional%20kinetic%20analysis%20of%20thermal%20decomposition%20of%201-butyl-3-methylimidazolium%20hexafluorophosphate%20under%20inert%20nitrogen%20and%20oxidative%20air%20atmospheres&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Huang,%20Zhen&rft.date=2020-04-01&rft.volume=140&rft.issue=2&rft.spage=695&rft.epage=712&rft.pages=695-712&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-019-08845-x&rft_dat=%3Cgale_proqu%3EA618697068%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2383542130&rft_id=info:pmid/&rft_galeid=A618697068&rfr_iscdi=true