The Medical Scribe: Corpus Development and Model Performance Analyses
There is a growing interest in creating tools to assist in clinical note generation using the audio of provider-patient encounters. Motivated by this goal and with the help of providers and medical scribes, we developed an annotation scheme to extract relevant clinical concepts. We used this annotat...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-03 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Shafran, Izhak Du, Nan Tran, Linh Perry, Amanda Keyes, Lauren Knichel, Mark Domin, Ashley Huang, Lei Chen, Yuhui Li, Gang Wang, Mingqiu Laurent El Shafey Soltau, Hagen Paul, Justin S |
description | There is a growing interest in creating tools to assist in clinical note generation using the audio of provider-patient encounters. Motivated by this goal and with the help of providers and medical scribes, we developed an annotation scheme to extract relevant clinical concepts. We used this annotation scheme to label a corpus of about 6k clinical encounters. This was used to train a state-of-the-art tagging model. We report ontologies, labeling results, model performances, and detailed analyses of the results. Our results show that the entities related to medications can be extracted with a relatively high accuracy of 0.90 F-score, followed by symptoms at 0.72 F-score, and conditions at 0.57 F-score. In our task, we not only identify where the symptoms are mentioned but also map them to canonical forms as they appear in the clinical notes. Of the different types of errors, in about 19-38% of the cases, we find that the model output was correct, and about 17-32% of the errors do not impact the clinical note. Taken together, the models developed in this work are more useful than the F-scores reflect, making it a promising approach for practical applications. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2383284679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2383284679</sourcerecordid><originalsourceid>FETCH-proquest_journals_23832846793</originalsourceid><addsrcrecordid>eNqNyssKgkAUANAhCJLyHy60FmzGx9QuzGgjBLmXSa-kjDM2V4P-vhZ9QKuzOQvmcSF2gYw4XzGfqA_DkCcpj2Phsbx8IBTYdLXScKtdd8cDZNaNM8EJX6jtOKCZQJkGCtughiu61rpBmRrhaJR-E9KGLVulCf2fa7Y952V2CUZnnzPSVPV2dt9MFRdScBkl6V78tz4ioDpp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383284679</pqid></control><display><type>article</type><title>The Medical Scribe: Corpus Development and Model Performance Analyses</title><source>Free E- Journals</source><creator>Shafran, Izhak ; Du, Nan ; Tran, Linh ; Perry, Amanda ; Keyes, Lauren ; Knichel, Mark ; Domin, Ashley ; Huang, Lei ; Chen, Yuhui ; Li, Gang ; Wang, Mingqiu ; Laurent El Shafey ; Soltau, Hagen ; Paul, Justin S</creator><creatorcontrib>Shafran, Izhak ; Du, Nan ; Tran, Linh ; Perry, Amanda ; Keyes, Lauren ; Knichel, Mark ; Domin, Ashley ; Huang, Lei ; Chen, Yuhui ; Li, Gang ; Wang, Mingqiu ; Laurent El Shafey ; Soltau, Hagen ; Paul, Justin S</creatorcontrib><description>There is a growing interest in creating tools to assist in clinical note generation using the audio of provider-patient encounters. Motivated by this goal and with the help of providers and medical scribes, we developed an annotation scheme to extract relevant clinical concepts. We used this annotation scheme to label a corpus of about 6k clinical encounters. This was used to train a state-of-the-art tagging model. We report ontologies, labeling results, model performances, and detailed analyses of the results. Our results show that the entities related to medications can be extracted with a relatively high accuracy of 0.90 F-score, followed by symptoms at 0.72 F-score, and conditions at 0.57 F-score. In our task, we not only identify where the symptoms are mentioned but also map them to canonical forms as they appear in the clinical notes. Of the different types of errors, in about 19-38% of the cases, we find that the model output was correct, and about 17-32% of the errors do not impact the clinical note. Taken together, the models developed in this work are more useful than the F-scores reflect, making it a promising approach for practical applications.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Annotations ; Canonical forms</subject><ispartof>arXiv.org, 2020-03</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Shafran, Izhak</creatorcontrib><creatorcontrib>Du, Nan</creatorcontrib><creatorcontrib>Tran, Linh</creatorcontrib><creatorcontrib>Perry, Amanda</creatorcontrib><creatorcontrib>Keyes, Lauren</creatorcontrib><creatorcontrib>Knichel, Mark</creatorcontrib><creatorcontrib>Domin, Ashley</creatorcontrib><creatorcontrib>Huang, Lei</creatorcontrib><creatorcontrib>Chen, Yuhui</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Wang, Mingqiu</creatorcontrib><creatorcontrib>Laurent El Shafey</creatorcontrib><creatorcontrib>Soltau, Hagen</creatorcontrib><creatorcontrib>Paul, Justin S</creatorcontrib><title>The Medical Scribe: Corpus Development and Model Performance Analyses</title><title>arXiv.org</title><description>There is a growing interest in creating tools to assist in clinical note generation using the audio of provider-patient encounters. Motivated by this goal and with the help of providers and medical scribes, we developed an annotation scheme to extract relevant clinical concepts. We used this annotation scheme to label a corpus of about 6k clinical encounters. This was used to train a state-of-the-art tagging model. We report ontologies, labeling results, model performances, and detailed analyses of the results. Our results show that the entities related to medications can be extracted with a relatively high accuracy of 0.90 F-score, followed by symptoms at 0.72 F-score, and conditions at 0.57 F-score. In our task, we not only identify where the symptoms are mentioned but also map them to canonical forms as they appear in the clinical notes. Of the different types of errors, in about 19-38% of the cases, we find that the model output was correct, and about 17-32% of the errors do not impact the clinical note. Taken together, the models developed in this work are more useful than the F-scores reflect, making it a promising approach for practical applications.</description><subject>Annotations</subject><subject>Canonical forms</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyssKgkAUANAhCJLyHy60FmzGx9QuzGgjBLmXSa-kjDM2V4P-vhZ9QKuzOQvmcSF2gYw4XzGfqA_DkCcpj2Phsbx8IBTYdLXScKtdd8cDZNaNM8EJX6jtOKCZQJkGCtughiu61rpBmRrhaJR-E9KGLVulCf2fa7Y952V2CUZnnzPSVPV2dt9MFRdScBkl6V78tz4ioDpp</recordid><startdate>20200312</startdate><enddate>20200312</enddate><creator>Shafran, Izhak</creator><creator>Du, Nan</creator><creator>Tran, Linh</creator><creator>Perry, Amanda</creator><creator>Keyes, Lauren</creator><creator>Knichel, Mark</creator><creator>Domin, Ashley</creator><creator>Huang, Lei</creator><creator>Chen, Yuhui</creator><creator>Li, Gang</creator><creator>Wang, Mingqiu</creator><creator>Laurent El Shafey</creator><creator>Soltau, Hagen</creator><creator>Paul, Justin S</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200312</creationdate><title>The Medical Scribe: Corpus Development and Model Performance Analyses</title><author>Shafran, Izhak ; Du, Nan ; Tran, Linh ; Perry, Amanda ; Keyes, Lauren ; Knichel, Mark ; Domin, Ashley ; Huang, Lei ; Chen, Yuhui ; Li, Gang ; Wang, Mingqiu ; Laurent El Shafey ; Soltau, Hagen ; Paul, Justin S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23832846793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Annotations</topic><topic>Canonical forms</topic><toplevel>online_resources</toplevel><creatorcontrib>Shafran, Izhak</creatorcontrib><creatorcontrib>Du, Nan</creatorcontrib><creatorcontrib>Tran, Linh</creatorcontrib><creatorcontrib>Perry, Amanda</creatorcontrib><creatorcontrib>Keyes, Lauren</creatorcontrib><creatorcontrib>Knichel, Mark</creatorcontrib><creatorcontrib>Domin, Ashley</creatorcontrib><creatorcontrib>Huang, Lei</creatorcontrib><creatorcontrib>Chen, Yuhui</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Wang, Mingqiu</creatorcontrib><creatorcontrib>Laurent El Shafey</creatorcontrib><creatorcontrib>Soltau, Hagen</creatorcontrib><creatorcontrib>Paul, Justin S</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shafran, Izhak</au><au>Du, Nan</au><au>Tran, Linh</au><au>Perry, Amanda</au><au>Keyes, Lauren</au><au>Knichel, Mark</au><au>Domin, Ashley</au><au>Huang, Lei</au><au>Chen, Yuhui</au><au>Li, Gang</au><au>Wang, Mingqiu</au><au>Laurent El Shafey</au><au>Soltau, Hagen</au><au>Paul, Justin S</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Medical Scribe: Corpus Development and Model Performance Analyses</atitle><jtitle>arXiv.org</jtitle><date>2020-03-12</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>There is a growing interest in creating tools to assist in clinical note generation using the audio of provider-patient encounters. Motivated by this goal and with the help of providers and medical scribes, we developed an annotation scheme to extract relevant clinical concepts. We used this annotation scheme to label a corpus of about 6k clinical encounters. This was used to train a state-of-the-art tagging model. We report ontologies, labeling results, model performances, and detailed analyses of the results. Our results show that the entities related to medications can be extracted with a relatively high accuracy of 0.90 F-score, followed by symptoms at 0.72 F-score, and conditions at 0.57 F-score. In our task, we not only identify where the symptoms are mentioned but also map them to canonical forms as they appear in the clinical notes. Of the different types of errors, in about 19-38% of the cases, we find that the model output was correct, and about 17-32% of the errors do not impact the clinical note. Taken together, the models developed in this work are more useful than the F-scores reflect, making it a promising approach for practical applications.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2383284679 |
source | Free E- Journals |
subjects | Annotations Canonical forms |
title | The Medical Scribe: Corpus Development and Model Performance Analyses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A03%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Medical%20Scribe:%20Corpus%20Development%20and%20Model%20Performance%20Analyses&rft.jtitle=arXiv.org&rft.au=Shafran,%20Izhak&rft.date=2020-03-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2383284679%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2383284679&rft_id=info:pmid/&rfr_iscdi=true |