Chiral Stereoisomer Engineering of Electron Transporting Materials for Efficient and Stable Perovskite Solar Cells

A series of chiral stereoisomers of electron transporting materials with two chiral substituents is rationally designed and synthesized, and the influence of stereoisomerism on their physical and electronic properties is investigated to demonstrate highly efficient and stable perovskite solar cells...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-03, Vol.30 (13), p.n/a
Hauptverfasser: Jung, Su‐Kyo, Heo, Jin Hyuck, Oh, Byeong M., Lee, Jong Bum, Park, Sung‐Ha, Yoon, Woojin, Song, Yunmi, Yun, Hoseop, Kim, Jong H., Im, Sang Hyuk, Kwon, O‐Pil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 13
container_start_page
container_title Advanced functional materials
container_volume 30
creator Jung, Su‐Kyo
Heo, Jin Hyuck
Oh, Byeong M.
Lee, Jong Bum
Park, Sung‐Ha
Yoon, Woojin
Song, Yunmi
Yun, Hoseop
Kim, Jong H.
Im, Sang Hyuk
Kwon, O‐Pil
description A series of chiral stereoisomers of electron transporting materials with two chiral substituents is rationally designed and synthesized, and the influence of stereoisomerism on their physical and electronic properties is investigated to demonstrate highly efficient and stable perovskite solar cells (PSCs). Compared to mesomeric naphthalene diimide (NDI) derivatives, which have heterochiral side groups with centrosymmetric molecular packing of symmetric‐shaped conformers in the crystalline state, enantiomeric NDI derivatives have homochiral side groups that exhibit non‐centrosymmetric molecular packing of asymmetric‐shaped conformers in the crystalline state and exhibit better solution processability based on one order of magnitude higher solubility. A similar trend is observed in different rylene diimide stereoisomers based on larger semiconducting core perylene diimide. The PSCs based on NDI enantiomers with good film‐forming ability and a very high lowest phase transition temperature (Tlowest) of 321 °C exhibit a high and uniform average power conversion efficiency (PCE) of 19.067 ± 0.654%. These PSCs also have a high temporal device stability, with less than 10% degradation of the PCE at 100 °C for 1000 h without encapsulation. Therefore, chiral stereoisomer engineering of charge transporting materials is a potential approach to achieve high solution processability, excellent performance, and significant temporal stability in organic electronic devices. A series of electron transporting chiral stereoisomers of naphthalene diimide crystalline materials having N‐substituted two chiral groups is rationally designed and synthesized for the simultaneous achievement of low‐temperature solution processability, high device performance, and long‐term temporal (and high‐temperature) device stability.
doi_str_mv 10.1002/adfm.201905951
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2383189768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2383189768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3541-8dacba36522b9955c604ef4ca1bc5973ac25c0b8f8101e86ae7fe4f6112ee9483</originalsourceid><addsrcrecordid>eNqFkMFLwzAUh4MoOKdXzwHPnUnTtMlx1E2FicImeCtp9jIzu2QmnbL_3pbJPHp6D973_R78ELqmZEQJSW_V0mxGKaGScMnpCRrQnOYJI6k4Pe707RxdxLgmhBYFywYolO82qAbPWwjgbfQbCHjiVtYBBOtW2Bs8aUC3wTu8CMrFrQ9tf3hSnWJVE7HxnWKM1RZci5VbdmmqbgC_QPBf8cO2gOe-UQGX0DTxEp2ZToOr3zlEr9PJonxIZs_3j-V4lmjGM5qIpdK1YjlP01pKznVOMjCZVrTWXBZM6ZRrUgsjKKEgcgWFgczklKYAMhNsiG4OudvgP3cQ22rtd8F1L6uUCUaFLPKeGh0oHXyMAUy1DXajwr6ipOp7rfpeq2OvnSAPwrdtYP8PXY3vpk9_7g_4zH4j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383189768</pqid></control><display><type>article</type><title>Chiral Stereoisomer Engineering of Electron Transporting Materials for Efficient and Stable Perovskite Solar Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jung, Su‐Kyo ; Heo, Jin Hyuck ; Oh, Byeong M. ; Lee, Jong Bum ; Park, Sung‐Ha ; Yoon, Woojin ; Song, Yunmi ; Yun, Hoseop ; Kim, Jong H. ; Im, Sang Hyuk ; Kwon, O‐Pil</creator><creatorcontrib>Jung, Su‐Kyo ; Heo, Jin Hyuck ; Oh, Byeong M. ; Lee, Jong Bum ; Park, Sung‐Ha ; Yoon, Woojin ; Song, Yunmi ; Yun, Hoseop ; Kim, Jong H. ; Im, Sang Hyuk ; Kwon, O‐Pil</creatorcontrib><description>A series of chiral stereoisomers of electron transporting materials with two chiral substituents is rationally designed and synthesized, and the influence of stereoisomerism on their physical and electronic properties is investigated to demonstrate highly efficient and stable perovskite solar cells (PSCs). Compared to mesomeric naphthalene diimide (NDI) derivatives, which have heterochiral side groups with centrosymmetric molecular packing of symmetric‐shaped conformers in the crystalline state, enantiomeric NDI derivatives have homochiral side groups that exhibit non‐centrosymmetric molecular packing of asymmetric‐shaped conformers in the crystalline state and exhibit better solution processability based on one order of magnitude higher solubility. A similar trend is observed in different rylene diimide stereoisomers based on larger semiconducting core perylene diimide. The PSCs based on NDI enantiomers with good film‐forming ability and a very high lowest phase transition temperature (Tlowest) of 321 °C exhibit a high and uniform average power conversion efficiency (PCE) of 19.067 ± 0.654%. These PSCs also have a high temporal device stability, with less than 10% degradation of the PCE at 100 °C for 1000 h without encapsulation. Therefore, chiral stereoisomer engineering of charge transporting materials is a potential approach to achieve high solution processability, excellent performance, and significant temporal stability in organic electronic devices. A series of electron transporting chiral stereoisomers of naphthalene diimide crystalline materials having N‐substituted two chiral groups is rationally designed and synthesized for the simultaneous achievement of low‐temperature solution processability, high device performance, and long‐term temporal (and high‐temperature) device stability.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201905951</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Charge materials ; chirality ; Crystal structure ; Crystallinity ; Derivatives ; Diimide ; Electron transport ; electron transporting materials ; Electronic devices ; Enantiomers ; Energy conversion efficiency ; Materials science ; Naphthalene ; perovskite solar cells ; Perovskites ; Phase transitions ; Photovoltaic cells ; Solar cells ; Stability ; Stereoisomerism ; stereoisomers ; Transition temperature</subject><ispartof>Advanced functional materials, 2020-03, Vol.30 (13), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3541-8dacba36522b9955c604ef4ca1bc5973ac25c0b8f8101e86ae7fe4f6112ee9483</citedby><cites>FETCH-LOGICAL-c3541-8dacba36522b9955c604ef4ca1bc5973ac25c0b8f8101e86ae7fe4f6112ee9483</cites><orcidid>0000-0002-7964-687X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201905951$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201905951$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Jung, Su‐Kyo</creatorcontrib><creatorcontrib>Heo, Jin Hyuck</creatorcontrib><creatorcontrib>Oh, Byeong M.</creatorcontrib><creatorcontrib>Lee, Jong Bum</creatorcontrib><creatorcontrib>Park, Sung‐Ha</creatorcontrib><creatorcontrib>Yoon, Woojin</creatorcontrib><creatorcontrib>Song, Yunmi</creatorcontrib><creatorcontrib>Yun, Hoseop</creatorcontrib><creatorcontrib>Kim, Jong H.</creatorcontrib><creatorcontrib>Im, Sang Hyuk</creatorcontrib><creatorcontrib>Kwon, O‐Pil</creatorcontrib><title>Chiral Stereoisomer Engineering of Electron Transporting Materials for Efficient and Stable Perovskite Solar Cells</title><title>Advanced functional materials</title><description>A series of chiral stereoisomers of electron transporting materials with two chiral substituents is rationally designed and synthesized, and the influence of stereoisomerism on their physical and electronic properties is investigated to demonstrate highly efficient and stable perovskite solar cells (PSCs). Compared to mesomeric naphthalene diimide (NDI) derivatives, which have heterochiral side groups with centrosymmetric molecular packing of symmetric‐shaped conformers in the crystalline state, enantiomeric NDI derivatives have homochiral side groups that exhibit non‐centrosymmetric molecular packing of asymmetric‐shaped conformers in the crystalline state and exhibit better solution processability based on one order of magnitude higher solubility. A similar trend is observed in different rylene diimide stereoisomers based on larger semiconducting core perylene diimide. The PSCs based on NDI enantiomers with good film‐forming ability and a very high lowest phase transition temperature (Tlowest) of 321 °C exhibit a high and uniform average power conversion efficiency (PCE) of 19.067 ± 0.654%. These PSCs also have a high temporal device stability, with less than 10% degradation of the PCE at 100 °C for 1000 h without encapsulation. Therefore, chiral stereoisomer engineering of charge transporting materials is a potential approach to achieve high solution processability, excellent performance, and significant temporal stability in organic electronic devices. A series of electron transporting chiral stereoisomers of naphthalene diimide crystalline materials having N‐substituted two chiral groups is rationally designed and synthesized for the simultaneous achievement of low‐temperature solution processability, high device performance, and long‐term temporal (and high‐temperature) device stability.</description><subject>Charge materials</subject><subject>chirality</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Derivatives</subject><subject>Diimide</subject><subject>Electron transport</subject><subject>electron transporting materials</subject><subject>Electronic devices</subject><subject>Enantiomers</subject><subject>Energy conversion efficiency</subject><subject>Materials science</subject><subject>Naphthalene</subject><subject>perovskite solar cells</subject><subject>Perovskites</subject><subject>Phase transitions</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Stability</subject><subject>Stereoisomerism</subject><subject>stereoisomers</subject><subject>Transition temperature</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMFLwzAUh4MoOKdXzwHPnUnTtMlx1E2FicImeCtp9jIzu2QmnbL_3pbJPHp6D973_R78ELqmZEQJSW_V0mxGKaGScMnpCRrQnOYJI6k4Pe707RxdxLgmhBYFywYolO82qAbPWwjgbfQbCHjiVtYBBOtW2Bs8aUC3wTu8CMrFrQ9tf3hSnWJVE7HxnWKM1RZci5VbdmmqbgC_QPBf8cO2gOe-UQGX0DTxEp2ZToOr3zlEr9PJonxIZs_3j-V4lmjGM5qIpdK1YjlP01pKznVOMjCZVrTWXBZM6ZRrUgsjKKEgcgWFgczklKYAMhNsiG4OudvgP3cQ22rtd8F1L6uUCUaFLPKeGh0oHXyMAUy1DXajwr6ipOp7rfpeq2OvnSAPwrdtYP8PXY3vpk9_7g_4zH4j</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Jung, Su‐Kyo</creator><creator>Heo, Jin Hyuck</creator><creator>Oh, Byeong M.</creator><creator>Lee, Jong Bum</creator><creator>Park, Sung‐Ha</creator><creator>Yoon, Woojin</creator><creator>Song, Yunmi</creator><creator>Yun, Hoseop</creator><creator>Kim, Jong H.</creator><creator>Im, Sang Hyuk</creator><creator>Kwon, O‐Pil</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7964-687X</orcidid></search><sort><creationdate>20200301</creationdate><title>Chiral Stereoisomer Engineering of Electron Transporting Materials for Efficient and Stable Perovskite Solar Cells</title><author>Jung, Su‐Kyo ; Heo, Jin Hyuck ; Oh, Byeong M. ; Lee, Jong Bum ; Park, Sung‐Ha ; Yoon, Woojin ; Song, Yunmi ; Yun, Hoseop ; Kim, Jong H. ; Im, Sang Hyuk ; Kwon, O‐Pil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3541-8dacba36522b9955c604ef4ca1bc5973ac25c0b8f8101e86ae7fe4f6112ee9483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Charge materials</topic><topic>chirality</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Derivatives</topic><topic>Diimide</topic><topic>Electron transport</topic><topic>electron transporting materials</topic><topic>Electronic devices</topic><topic>Enantiomers</topic><topic>Energy conversion efficiency</topic><topic>Materials science</topic><topic>Naphthalene</topic><topic>perovskite solar cells</topic><topic>Perovskites</topic><topic>Phase transitions</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Stability</topic><topic>Stereoisomerism</topic><topic>stereoisomers</topic><topic>Transition temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Su‐Kyo</creatorcontrib><creatorcontrib>Heo, Jin Hyuck</creatorcontrib><creatorcontrib>Oh, Byeong M.</creatorcontrib><creatorcontrib>Lee, Jong Bum</creatorcontrib><creatorcontrib>Park, Sung‐Ha</creatorcontrib><creatorcontrib>Yoon, Woojin</creatorcontrib><creatorcontrib>Song, Yunmi</creatorcontrib><creatorcontrib>Yun, Hoseop</creatorcontrib><creatorcontrib>Kim, Jong H.</creatorcontrib><creatorcontrib>Im, Sang Hyuk</creatorcontrib><creatorcontrib>Kwon, O‐Pil</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Su‐Kyo</au><au>Heo, Jin Hyuck</au><au>Oh, Byeong M.</au><au>Lee, Jong Bum</au><au>Park, Sung‐Ha</au><au>Yoon, Woojin</au><au>Song, Yunmi</au><au>Yun, Hoseop</au><au>Kim, Jong H.</au><au>Im, Sang Hyuk</au><au>Kwon, O‐Pil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chiral Stereoisomer Engineering of Electron Transporting Materials for Efficient and Stable Perovskite Solar Cells</atitle><jtitle>Advanced functional materials</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>30</volume><issue>13</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>A series of chiral stereoisomers of electron transporting materials with two chiral substituents is rationally designed and synthesized, and the influence of stereoisomerism on their physical and electronic properties is investigated to demonstrate highly efficient and stable perovskite solar cells (PSCs). Compared to mesomeric naphthalene diimide (NDI) derivatives, which have heterochiral side groups with centrosymmetric molecular packing of symmetric‐shaped conformers in the crystalline state, enantiomeric NDI derivatives have homochiral side groups that exhibit non‐centrosymmetric molecular packing of asymmetric‐shaped conformers in the crystalline state and exhibit better solution processability based on one order of magnitude higher solubility. A similar trend is observed in different rylene diimide stereoisomers based on larger semiconducting core perylene diimide. The PSCs based on NDI enantiomers with good film‐forming ability and a very high lowest phase transition temperature (Tlowest) of 321 °C exhibit a high and uniform average power conversion efficiency (PCE) of 19.067 ± 0.654%. These PSCs also have a high temporal device stability, with less than 10% degradation of the PCE at 100 °C for 1000 h without encapsulation. Therefore, chiral stereoisomer engineering of charge transporting materials is a potential approach to achieve high solution processability, excellent performance, and significant temporal stability in organic electronic devices. A series of electron transporting chiral stereoisomers of naphthalene diimide crystalline materials having N‐substituted two chiral groups is rationally designed and synthesized for the simultaneous achievement of low‐temperature solution processability, high device performance, and long‐term temporal (and high‐temperature) device stability.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201905951</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7964-687X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-03, Vol.30 (13), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2383189768
source Wiley Online Library Journals Frontfile Complete
subjects Charge materials
chirality
Crystal structure
Crystallinity
Derivatives
Diimide
Electron transport
electron transporting materials
Electronic devices
Enantiomers
Energy conversion efficiency
Materials science
Naphthalene
perovskite solar cells
Perovskites
Phase transitions
Photovoltaic cells
Solar cells
Stability
Stereoisomerism
stereoisomers
Transition temperature
title Chiral Stereoisomer Engineering of Electron Transporting Materials for Efficient and Stable Perovskite Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A29%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chiral%20Stereoisomer%20Engineering%20of%20Electron%20Transporting%20Materials%20for%20Efficient%20and%20Stable%20Perovskite%20Solar%20Cells&rft.jtitle=Advanced%20functional%20materials&rft.au=Jung,%20Su%E2%80%90Kyo&rft.date=2020-03-01&rft.volume=30&rft.issue=13&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201905951&rft_dat=%3Cproquest_cross%3E2383189768%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2383189768&rft_id=info:pmid/&rfr_iscdi=true