Chiral Stereoisomer Engineering of Electron Transporting Materials for Efficient and Stable Perovskite Solar Cells
A series of chiral stereoisomers of electron transporting materials with two chiral substituents is rationally designed and synthesized, and the influence of stereoisomerism on their physical and electronic properties is investigated to demonstrate highly efficient and stable perovskite solar cells...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2020-03, Vol.30 (13), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 13 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 30 |
creator | Jung, Su‐Kyo Heo, Jin Hyuck Oh, Byeong M. Lee, Jong Bum Park, Sung‐Ha Yoon, Woojin Song, Yunmi Yun, Hoseop Kim, Jong H. Im, Sang Hyuk Kwon, O‐Pil |
description | A series of chiral stereoisomers of electron transporting materials with two chiral substituents is rationally designed and synthesized, and the influence of stereoisomerism on their physical and electronic properties is investigated to demonstrate highly efficient and stable perovskite solar cells (PSCs). Compared to mesomeric naphthalene diimide (NDI) derivatives, which have heterochiral side groups with centrosymmetric molecular packing of symmetric‐shaped conformers in the crystalline state, enantiomeric NDI derivatives have homochiral side groups that exhibit non‐centrosymmetric molecular packing of asymmetric‐shaped conformers in the crystalline state and exhibit better solution processability based on one order of magnitude higher solubility. A similar trend is observed in different rylene diimide stereoisomers based on larger semiconducting core perylene diimide. The PSCs based on NDI enantiomers with good film‐forming ability and a very high lowest phase transition temperature (Tlowest) of 321 °C exhibit a high and uniform average power conversion efficiency (PCE) of 19.067 ± 0.654%. These PSCs also have a high temporal device stability, with less than 10% degradation of the PCE at 100 °C for 1000 h without encapsulation. Therefore, chiral stereoisomer engineering of charge transporting materials is a potential approach to achieve high solution processability, excellent performance, and significant temporal stability in organic electronic devices.
A series of electron transporting chiral stereoisomers of naphthalene diimide crystalline materials having N‐substituted two chiral groups is rationally designed and synthesized for the simultaneous achievement of low‐temperature solution processability, high device performance, and long‐term temporal (and high‐temperature) device stability. |
doi_str_mv | 10.1002/adfm.201905951 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2383189768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2383189768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3541-8dacba36522b9955c604ef4ca1bc5973ac25c0b8f8101e86ae7fe4f6112ee9483</originalsourceid><addsrcrecordid>eNqFkMFLwzAUh4MoOKdXzwHPnUnTtMlx1E2FicImeCtp9jIzu2QmnbL_3pbJPHp6D973_R78ELqmZEQJSW_V0mxGKaGScMnpCRrQnOYJI6k4Pe707RxdxLgmhBYFywYolO82qAbPWwjgbfQbCHjiVtYBBOtW2Bs8aUC3wTu8CMrFrQ9tf3hSnWJVE7HxnWKM1RZci5VbdmmqbgC_QPBf8cO2gOe-UQGX0DTxEp2ZToOr3zlEr9PJonxIZs_3j-V4lmjGM5qIpdK1YjlP01pKznVOMjCZVrTWXBZM6ZRrUgsjKKEgcgWFgczklKYAMhNsiG4OudvgP3cQ22rtd8F1L6uUCUaFLPKeGh0oHXyMAUy1DXajwr6ipOp7rfpeq2OvnSAPwrdtYP8PXY3vpk9_7g_4zH4j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383189768</pqid></control><display><type>article</type><title>Chiral Stereoisomer Engineering of Electron Transporting Materials for Efficient and Stable Perovskite Solar Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jung, Su‐Kyo ; Heo, Jin Hyuck ; Oh, Byeong M. ; Lee, Jong Bum ; Park, Sung‐Ha ; Yoon, Woojin ; Song, Yunmi ; Yun, Hoseop ; Kim, Jong H. ; Im, Sang Hyuk ; Kwon, O‐Pil</creator><creatorcontrib>Jung, Su‐Kyo ; Heo, Jin Hyuck ; Oh, Byeong M. ; Lee, Jong Bum ; Park, Sung‐Ha ; Yoon, Woojin ; Song, Yunmi ; Yun, Hoseop ; Kim, Jong H. ; Im, Sang Hyuk ; Kwon, O‐Pil</creatorcontrib><description>A series of chiral stereoisomers of electron transporting materials with two chiral substituents is rationally designed and synthesized, and the influence of stereoisomerism on their physical and electronic properties is investigated to demonstrate highly efficient and stable perovskite solar cells (PSCs). Compared to mesomeric naphthalene diimide (NDI) derivatives, which have heterochiral side groups with centrosymmetric molecular packing of symmetric‐shaped conformers in the crystalline state, enantiomeric NDI derivatives have homochiral side groups that exhibit non‐centrosymmetric molecular packing of asymmetric‐shaped conformers in the crystalline state and exhibit better solution processability based on one order of magnitude higher solubility. A similar trend is observed in different rylene diimide stereoisomers based on larger semiconducting core perylene diimide. The PSCs based on NDI enantiomers with good film‐forming ability and a very high lowest phase transition temperature (Tlowest) of 321 °C exhibit a high and uniform average power conversion efficiency (PCE) of 19.067 ± 0.654%. These PSCs also have a high temporal device stability, with less than 10% degradation of the PCE at 100 °C for 1000 h without encapsulation. Therefore, chiral stereoisomer engineering of charge transporting materials is a potential approach to achieve high solution processability, excellent performance, and significant temporal stability in organic electronic devices.
A series of electron transporting chiral stereoisomers of naphthalene diimide crystalline materials having N‐substituted two chiral groups is rationally designed and synthesized for the simultaneous achievement of low‐temperature solution processability, high device performance, and long‐term temporal (and high‐temperature) device stability.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201905951</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Charge materials ; chirality ; Crystal structure ; Crystallinity ; Derivatives ; Diimide ; Electron transport ; electron transporting materials ; Electronic devices ; Enantiomers ; Energy conversion efficiency ; Materials science ; Naphthalene ; perovskite solar cells ; Perovskites ; Phase transitions ; Photovoltaic cells ; Solar cells ; Stability ; Stereoisomerism ; stereoisomers ; Transition temperature</subject><ispartof>Advanced functional materials, 2020-03, Vol.30 (13), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3541-8dacba36522b9955c604ef4ca1bc5973ac25c0b8f8101e86ae7fe4f6112ee9483</citedby><cites>FETCH-LOGICAL-c3541-8dacba36522b9955c604ef4ca1bc5973ac25c0b8f8101e86ae7fe4f6112ee9483</cites><orcidid>0000-0002-7964-687X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201905951$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201905951$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Jung, Su‐Kyo</creatorcontrib><creatorcontrib>Heo, Jin Hyuck</creatorcontrib><creatorcontrib>Oh, Byeong M.</creatorcontrib><creatorcontrib>Lee, Jong Bum</creatorcontrib><creatorcontrib>Park, Sung‐Ha</creatorcontrib><creatorcontrib>Yoon, Woojin</creatorcontrib><creatorcontrib>Song, Yunmi</creatorcontrib><creatorcontrib>Yun, Hoseop</creatorcontrib><creatorcontrib>Kim, Jong H.</creatorcontrib><creatorcontrib>Im, Sang Hyuk</creatorcontrib><creatorcontrib>Kwon, O‐Pil</creatorcontrib><title>Chiral Stereoisomer Engineering of Electron Transporting Materials for Efficient and Stable Perovskite Solar Cells</title><title>Advanced functional materials</title><description>A series of chiral stereoisomers of electron transporting materials with two chiral substituents is rationally designed and synthesized, and the influence of stereoisomerism on their physical and electronic properties is investigated to demonstrate highly efficient and stable perovskite solar cells (PSCs). Compared to mesomeric naphthalene diimide (NDI) derivatives, which have heterochiral side groups with centrosymmetric molecular packing of symmetric‐shaped conformers in the crystalline state, enantiomeric NDI derivatives have homochiral side groups that exhibit non‐centrosymmetric molecular packing of asymmetric‐shaped conformers in the crystalline state and exhibit better solution processability based on one order of magnitude higher solubility. A similar trend is observed in different rylene diimide stereoisomers based on larger semiconducting core perylene diimide. The PSCs based on NDI enantiomers with good film‐forming ability and a very high lowest phase transition temperature (Tlowest) of 321 °C exhibit a high and uniform average power conversion efficiency (PCE) of 19.067 ± 0.654%. These PSCs also have a high temporal device stability, with less than 10% degradation of the PCE at 100 °C for 1000 h without encapsulation. Therefore, chiral stereoisomer engineering of charge transporting materials is a potential approach to achieve high solution processability, excellent performance, and significant temporal stability in organic electronic devices.
A series of electron transporting chiral stereoisomers of naphthalene diimide crystalline materials having N‐substituted two chiral groups is rationally designed and synthesized for the simultaneous achievement of low‐temperature solution processability, high device performance, and long‐term temporal (and high‐temperature) device stability.</description><subject>Charge materials</subject><subject>chirality</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Derivatives</subject><subject>Diimide</subject><subject>Electron transport</subject><subject>electron transporting materials</subject><subject>Electronic devices</subject><subject>Enantiomers</subject><subject>Energy conversion efficiency</subject><subject>Materials science</subject><subject>Naphthalene</subject><subject>perovskite solar cells</subject><subject>Perovskites</subject><subject>Phase transitions</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Stability</subject><subject>Stereoisomerism</subject><subject>stereoisomers</subject><subject>Transition temperature</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMFLwzAUh4MoOKdXzwHPnUnTtMlx1E2FicImeCtp9jIzu2QmnbL_3pbJPHp6D973_R78ELqmZEQJSW_V0mxGKaGScMnpCRrQnOYJI6k4Pe707RxdxLgmhBYFywYolO82qAbPWwjgbfQbCHjiVtYBBOtW2Bs8aUC3wTu8CMrFrQ9tf3hSnWJVE7HxnWKM1RZci5VbdmmqbgC_QPBf8cO2gOe-UQGX0DTxEp2ZToOr3zlEr9PJonxIZs_3j-V4lmjGM5qIpdK1YjlP01pKznVOMjCZVrTWXBZM6ZRrUgsjKKEgcgWFgczklKYAMhNsiG4OudvgP3cQ22rtd8F1L6uUCUaFLPKeGh0oHXyMAUy1DXajwr6ipOp7rfpeq2OvnSAPwrdtYP8PXY3vpk9_7g_4zH4j</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Jung, Su‐Kyo</creator><creator>Heo, Jin Hyuck</creator><creator>Oh, Byeong M.</creator><creator>Lee, Jong Bum</creator><creator>Park, Sung‐Ha</creator><creator>Yoon, Woojin</creator><creator>Song, Yunmi</creator><creator>Yun, Hoseop</creator><creator>Kim, Jong H.</creator><creator>Im, Sang Hyuk</creator><creator>Kwon, O‐Pil</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7964-687X</orcidid></search><sort><creationdate>20200301</creationdate><title>Chiral Stereoisomer Engineering of Electron Transporting Materials for Efficient and Stable Perovskite Solar Cells</title><author>Jung, Su‐Kyo ; Heo, Jin Hyuck ; Oh, Byeong M. ; Lee, Jong Bum ; Park, Sung‐Ha ; Yoon, Woojin ; Song, Yunmi ; Yun, Hoseop ; Kim, Jong H. ; Im, Sang Hyuk ; Kwon, O‐Pil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3541-8dacba36522b9955c604ef4ca1bc5973ac25c0b8f8101e86ae7fe4f6112ee9483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Charge materials</topic><topic>chirality</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Derivatives</topic><topic>Diimide</topic><topic>Electron transport</topic><topic>electron transporting materials</topic><topic>Electronic devices</topic><topic>Enantiomers</topic><topic>Energy conversion efficiency</topic><topic>Materials science</topic><topic>Naphthalene</topic><topic>perovskite solar cells</topic><topic>Perovskites</topic><topic>Phase transitions</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Stability</topic><topic>Stereoisomerism</topic><topic>stereoisomers</topic><topic>Transition temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Su‐Kyo</creatorcontrib><creatorcontrib>Heo, Jin Hyuck</creatorcontrib><creatorcontrib>Oh, Byeong M.</creatorcontrib><creatorcontrib>Lee, Jong Bum</creatorcontrib><creatorcontrib>Park, Sung‐Ha</creatorcontrib><creatorcontrib>Yoon, Woojin</creatorcontrib><creatorcontrib>Song, Yunmi</creatorcontrib><creatorcontrib>Yun, Hoseop</creatorcontrib><creatorcontrib>Kim, Jong H.</creatorcontrib><creatorcontrib>Im, Sang Hyuk</creatorcontrib><creatorcontrib>Kwon, O‐Pil</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Su‐Kyo</au><au>Heo, Jin Hyuck</au><au>Oh, Byeong M.</au><au>Lee, Jong Bum</au><au>Park, Sung‐Ha</au><au>Yoon, Woojin</au><au>Song, Yunmi</au><au>Yun, Hoseop</au><au>Kim, Jong H.</au><au>Im, Sang Hyuk</au><au>Kwon, O‐Pil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chiral Stereoisomer Engineering of Electron Transporting Materials for Efficient and Stable Perovskite Solar Cells</atitle><jtitle>Advanced functional materials</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>30</volume><issue>13</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>A series of chiral stereoisomers of electron transporting materials with two chiral substituents is rationally designed and synthesized, and the influence of stereoisomerism on their physical and electronic properties is investigated to demonstrate highly efficient and stable perovskite solar cells (PSCs). Compared to mesomeric naphthalene diimide (NDI) derivatives, which have heterochiral side groups with centrosymmetric molecular packing of symmetric‐shaped conformers in the crystalline state, enantiomeric NDI derivatives have homochiral side groups that exhibit non‐centrosymmetric molecular packing of asymmetric‐shaped conformers in the crystalline state and exhibit better solution processability based on one order of magnitude higher solubility. A similar trend is observed in different rylene diimide stereoisomers based on larger semiconducting core perylene diimide. The PSCs based on NDI enantiomers with good film‐forming ability and a very high lowest phase transition temperature (Tlowest) of 321 °C exhibit a high and uniform average power conversion efficiency (PCE) of 19.067 ± 0.654%. These PSCs also have a high temporal device stability, with less than 10% degradation of the PCE at 100 °C for 1000 h without encapsulation. Therefore, chiral stereoisomer engineering of charge transporting materials is a potential approach to achieve high solution processability, excellent performance, and significant temporal stability in organic electronic devices.
A series of electron transporting chiral stereoisomers of naphthalene diimide crystalline materials having N‐substituted two chiral groups is rationally designed and synthesized for the simultaneous achievement of low‐temperature solution processability, high device performance, and long‐term temporal (and high‐temperature) device stability.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201905951</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7964-687X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2020-03, Vol.30 (13), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2383189768 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Charge materials chirality Crystal structure Crystallinity Derivatives Diimide Electron transport electron transporting materials Electronic devices Enantiomers Energy conversion efficiency Materials science Naphthalene perovskite solar cells Perovskites Phase transitions Photovoltaic cells Solar cells Stability Stereoisomerism stereoisomers Transition temperature |
title | Chiral Stereoisomer Engineering of Electron Transporting Materials for Efficient and Stable Perovskite Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A29%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chiral%20Stereoisomer%20Engineering%20of%20Electron%20Transporting%20Materials%20for%20Efficient%20and%20Stable%20Perovskite%20Solar%20Cells&rft.jtitle=Advanced%20functional%20materials&rft.au=Jung,%20Su%E2%80%90Kyo&rft.date=2020-03-01&rft.volume=30&rft.issue=13&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201905951&rft_dat=%3Cproquest_cross%3E2383189768%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2383189768&rft_id=info:pmid/&rfr_iscdi=true |