Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Zn‐Based Batteries

Aqueous Zn batteries have drawn tremendous attention for their several advantages. However, the challenges of Zn anodes such as the corrosion and ZnO densification have compromised their application in rechargeable Zn‐based batteries. In this paper, a straightforward strategy is employed to facilita...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-03, Vol.30 (13), p.n/a
Hauptverfasser: Liang, Pengcheng, Yi, Jin, Liu, Xiaoyu, Wu, Kai, Wang, Zhuo, Cui, Jin, Liu, Yuyu, Wang, Yonggang, Xia, Yongyao, Zhang, Jiujun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 13
container_start_page
container_title Advanced functional materials
container_volume 30
creator Liang, Pengcheng
Yi, Jin
Liu, Xiaoyu
Wu, Kai
Wang, Zhuo
Cui, Jin
Liu, Yuyu
Wang, Yonggang
Xia, Yongyao
Zhang, Jiujun
description Aqueous Zn batteries have drawn tremendous attention for their several advantages. However, the challenges of Zn anodes such as the corrosion and ZnO densification have compromised their application in rechargeable Zn‐based batteries. In this paper, a straightforward strategy is employed to facilitate the uniform Zn stripping/plating of the Zn anode through using a ZrO2 coating layer, which contributes to the controllable nucleation sites for Zn2+ and fast Zn2+ transportation through the favorable Maxwell–Wagner polarization. As a result, the low polarization (24 mV at 0.25 mA cm−2), high Coulombic efficiency (99.36% at 20 mA cm−2), and long cycle life (over 3800 h at 0.25 mA cm−2) can be obtained for the ZrO2‐coated Zn anode. It is believed that the ZrO2 coating layer can also act as an inert physical barrier to decrease the contact of the anode and electrolyte, thus reducing both the Zn corrosion and formation of ZnO densification, and then improve the reversibility of Zn anode. The results demonstrated in this work provide an appealing strategy for the future development of rechargeable Zn‐based batteries. A highly reversible Zn anode is achieved through controllable nucleation sites for Zn2+ and fast Zn2+ transportation under the favorable Maxwell–Wagner polarization, in which a low polarization (24 mV), high Coulombic efficiency (99.36%), and long cycle life (over 3800 h) are obtained by employing a ZrO2‐coating layer.
doi_str_mv 10.1002/adfm.201908528
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2383178217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2383178217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4228-c9f6f94deecedc865f943d9dea9c2a138da8d5f328b30098d77c855cbaf168313</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKtb1wHXU_PozGSWbW2tUBV8gLgJmTw0ZTqpyVSZnT_B3-gvMWWkLl3dey7fORcOAKcYDTBC5FwosxoQhAvEUsL2QA9nOEsoImx_t-OnQ3AUwhIhnOd02AN2bl9eqxbe6Xftgy0rDZ9rOKqd0nBai6gVLFs4cXXjXVVtD3Dm_Eo01tXQGXizkZXu1L1tdIDG-Rjx_fk1FiGax6JptLc6HIMDI6qgT35nHzzOpg-TebK4vbyajBaJHBLCElmYzBRDpbXUSrIsjYKqQmlRSCIwZUowlRpKWEkRKpjKc8nSVJbC4IxRTPvgrMtde_e20aHhS7fxdXzJCY1AzgjOIzXoKOldCF4bvvZ2JXzLMeLbOvm2Tr6rMxqKzvBhK93-Q_PRxez6z_sDCI97TQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383178217</pqid></control><display><type>article</type><title>Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Zn‐Based Batteries</title><source>Wiley Journals</source><creator>Liang, Pengcheng ; Yi, Jin ; Liu, Xiaoyu ; Wu, Kai ; Wang, Zhuo ; Cui, Jin ; Liu, Yuyu ; Wang, Yonggang ; Xia, Yongyao ; Zhang, Jiujun</creator><creatorcontrib>Liang, Pengcheng ; Yi, Jin ; Liu, Xiaoyu ; Wu, Kai ; Wang, Zhuo ; Cui, Jin ; Liu, Yuyu ; Wang, Yonggang ; Xia, Yongyao ; Zhang, Jiujun</creatorcontrib><description>Aqueous Zn batteries have drawn tremendous attention for their several advantages. However, the challenges of Zn anodes such as the corrosion and ZnO densification have compromised their application in rechargeable Zn‐based batteries. In this paper, a straightforward strategy is employed to facilitate the uniform Zn stripping/plating of the Zn anode through using a ZrO2 coating layer, which contributes to the controllable nucleation sites for Zn2+ and fast Zn2+ transportation through the favorable Maxwell–Wagner polarization. As a result, the low polarization (24 mV at 0.25 mA cm−2), high Coulombic efficiency (99.36% at 20 mA cm−2), and long cycle life (over 3800 h at 0.25 mA cm−2) can be obtained for the ZrO2‐coated Zn anode. It is believed that the ZrO2 coating layer can also act as an inert physical barrier to decrease the contact of the anode and electrolyte, thus reducing both the Zn corrosion and formation of ZnO densification, and then improve the reversibility of Zn anode. The results demonstrated in this work provide an appealing strategy for the future development of rechargeable Zn‐based batteries. A highly reversible Zn anode is achieved through controllable nucleation sites for Zn2+ and fast Zn2+ transportation under the favorable Maxwell–Wagner polarization, in which a low polarization (24 mV), high Coulombic efficiency (99.36%), and long cycle life (over 3800 h) are obtained by employing a ZrO2‐coating layer.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201908528</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Anodic coatings ; Barriers ; controllable nucleation ; Densification ; Electrode polarization ; Materials science ; Nucleation ; Rechargeable batteries ; surface modification ; Zinc oxide ; Zirconium dioxide ; Zn anodes ; Zn corrosion ; Zn‐based batteries</subject><ispartof>Advanced functional materials, 2020-03, Vol.30 (13), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4228-c9f6f94deecedc865f943d9dea9c2a138da8d5f328b30098d77c855cbaf168313</citedby><cites>FETCH-LOGICAL-c4228-c9f6f94deecedc865f943d9dea9c2a138da8d5f328b30098d77c855cbaf168313</cites><orcidid>0000-0001-6379-9655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201908528$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201908528$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Liang, Pengcheng</creatorcontrib><creatorcontrib>Yi, Jin</creatorcontrib><creatorcontrib>Liu, Xiaoyu</creatorcontrib><creatorcontrib>Wu, Kai</creatorcontrib><creatorcontrib>Wang, Zhuo</creatorcontrib><creatorcontrib>Cui, Jin</creatorcontrib><creatorcontrib>Liu, Yuyu</creatorcontrib><creatorcontrib>Wang, Yonggang</creatorcontrib><creatorcontrib>Xia, Yongyao</creatorcontrib><creatorcontrib>Zhang, Jiujun</creatorcontrib><title>Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Zn‐Based Batteries</title><title>Advanced functional materials</title><description>Aqueous Zn batteries have drawn tremendous attention for their several advantages. However, the challenges of Zn anodes such as the corrosion and ZnO densification have compromised their application in rechargeable Zn‐based batteries. In this paper, a straightforward strategy is employed to facilitate the uniform Zn stripping/plating of the Zn anode through using a ZrO2 coating layer, which contributes to the controllable nucleation sites for Zn2+ and fast Zn2+ transportation through the favorable Maxwell–Wagner polarization. As a result, the low polarization (24 mV at 0.25 mA cm−2), high Coulombic efficiency (99.36% at 20 mA cm−2), and long cycle life (over 3800 h at 0.25 mA cm−2) can be obtained for the ZrO2‐coated Zn anode. It is believed that the ZrO2 coating layer can also act as an inert physical barrier to decrease the contact of the anode and electrolyte, thus reducing both the Zn corrosion and formation of ZnO densification, and then improve the reversibility of Zn anode. The results demonstrated in this work provide an appealing strategy for the future development of rechargeable Zn‐based batteries. A highly reversible Zn anode is achieved through controllable nucleation sites for Zn2+ and fast Zn2+ transportation under the favorable Maxwell–Wagner polarization, in which a low polarization (24 mV), high Coulombic efficiency (99.36%), and long cycle life (over 3800 h) are obtained by employing a ZrO2‐coating layer.</description><subject>Anodes</subject><subject>Anodic coatings</subject><subject>Barriers</subject><subject>controllable nucleation</subject><subject>Densification</subject><subject>Electrode polarization</subject><subject>Materials science</subject><subject>Nucleation</subject><subject>Rechargeable batteries</subject><subject>surface modification</subject><subject>Zinc oxide</subject><subject>Zirconium dioxide</subject><subject>Zn anodes</subject><subject>Zn corrosion</subject><subject>Zn‐based batteries</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKtb1wHXU_PozGSWbW2tUBV8gLgJmTw0ZTqpyVSZnT_B3-gvMWWkLl3dey7fORcOAKcYDTBC5FwosxoQhAvEUsL2QA9nOEsoImx_t-OnQ3AUwhIhnOd02AN2bl9eqxbe6Xftgy0rDZ9rOKqd0nBai6gVLFs4cXXjXVVtD3Dm_Eo01tXQGXizkZXu1L1tdIDG-Rjx_fk1FiGax6JptLc6HIMDI6qgT35nHzzOpg-TebK4vbyajBaJHBLCElmYzBRDpbXUSrIsjYKqQmlRSCIwZUowlRpKWEkRKpjKc8nSVJbC4IxRTPvgrMtde_e20aHhS7fxdXzJCY1AzgjOIzXoKOldCF4bvvZ2JXzLMeLbOvm2Tr6rMxqKzvBhK93-Q_PRxez6z_sDCI97TQ</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Liang, Pengcheng</creator><creator>Yi, Jin</creator><creator>Liu, Xiaoyu</creator><creator>Wu, Kai</creator><creator>Wang, Zhuo</creator><creator>Cui, Jin</creator><creator>Liu, Yuyu</creator><creator>Wang, Yonggang</creator><creator>Xia, Yongyao</creator><creator>Zhang, Jiujun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6379-9655</orcidid></search><sort><creationdate>20200301</creationdate><title>Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Zn‐Based Batteries</title><author>Liang, Pengcheng ; Yi, Jin ; Liu, Xiaoyu ; Wu, Kai ; Wang, Zhuo ; Cui, Jin ; Liu, Yuyu ; Wang, Yonggang ; Xia, Yongyao ; Zhang, Jiujun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4228-c9f6f94deecedc865f943d9dea9c2a138da8d5f328b30098d77c855cbaf168313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anodes</topic><topic>Anodic coatings</topic><topic>Barriers</topic><topic>controllable nucleation</topic><topic>Densification</topic><topic>Electrode polarization</topic><topic>Materials science</topic><topic>Nucleation</topic><topic>Rechargeable batteries</topic><topic>surface modification</topic><topic>Zinc oxide</topic><topic>Zirconium dioxide</topic><topic>Zn anodes</topic><topic>Zn corrosion</topic><topic>Zn‐based batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Pengcheng</creatorcontrib><creatorcontrib>Yi, Jin</creatorcontrib><creatorcontrib>Liu, Xiaoyu</creatorcontrib><creatorcontrib>Wu, Kai</creatorcontrib><creatorcontrib>Wang, Zhuo</creatorcontrib><creatorcontrib>Cui, Jin</creatorcontrib><creatorcontrib>Liu, Yuyu</creatorcontrib><creatorcontrib>Wang, Yonggang</creatorcontrib><creatorcontrib>Xia, Yongyao</creatorcontrib><creatorcontrib>Zhang, Jiujun</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Pengcheng</au><au>Yi, Jin</au><au>Liu, Xiaoyu</au><au>Wu, Kai</au><au>Wang, Zhuo</au><au>Cui, Jin</au><au>Liu, Yuyu</au><au>Wang, Yonggang</au><au>Xia, Yongyao</au><au>Zhang, Jiujun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Zn‐Based Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>30</volume><issue>13</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Aqueous Zn batteries have drawn tremendous attention for their several advantages. However, the challenges of Zn anodes such as the corrosion and ZnO densification have compromised their application in rechargeable Zn‐based batteries. In this paper, a straightforward strategy is employed to facilitate the uniform Zn stripping/plating of the Zn anode through using a ZrO2 coating layer, which contributes to the controllable nucleation sites for Zn2+ and fast Zn2+ transportation through the favorable Maxwell–Wagner polarization. As a result, the low polarization (24 mV at 0.25 mA cm−2), high Coulombic efficiency (99.36% at 20 mA cm−2), and long cycle life (over 3800 h at 0.25 mA cm−2) can be obtained for the ZrO2‐coated Zn anode. It is believed that the ZrO2 coating layer can also act as an inert physical barrier to decrease the contact of the anode and electrolyte, thus reducing both the Zn corrosion and formation of ZnO densification, and then improve the reversibility of Zn anode. The results demonstrated in this work provide an appealing strategy for the future development of rechargeable Zn‐based batteries. A highly reversible Zn anode is achieved through controllable nucleation sites for Zn2+ and fast Zn2+ transportation under the favorable Maxwell–Wagner polarization, in which a low polarization (24 mV), high Coulombic efficiency (99.36%), and long cycle life (over 3800 h) are obtained by employing a ZrO2‐coating layer.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201908528</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6379-9655</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-03, Vol.30 (13), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2383178217
source Wiley Journals
subjects Anodes
Anodic coatings
Barriers
controllable nucleation
Densification
Electrode polarization
Materials science
Nucleation
Rechargeable batteries
surface modification
Zinc oxide
Zirconium dioxide
Zn anodes
Zn corrosion
Zn‐based batteries
title Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Zn‐Based Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A22%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Reversible%20Zn%20Anode%20Enabled%20by%20Controllable%20Formation%20of%20Nucleation%20Sites%20for%20Zn%E2%80%90Based%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Liang,%20Pengcheng&rft.date=2020-03-01&rft.volume=30&rft.issue=13&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201908528&rft_dat=%3Cproquest_cross%3E2383178217%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2383178217&rft_id=info:pmid/&rfr_iscdi=true