Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Zn‐Based Batteries
Aqueous Zn batteries have drawn tremendous attention for their several advantages. However, the challenges of Zn anodes such as the corrosion and ZnO densification have compromised their application in rechargeable Zn‐based batteries. In this paper, a straightforward strategy is employed to facilita...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2020-03, Vol.30 (13), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 13 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 30 |
creator | Liang, Pengcheng Yi, Jin Liu, Xiaoyu Wu, Kai Wang, Zhuo Cui, Jin Liu, Yuyu Wang, Yonggang Xia, Yongyao Zhang, Jiujun |
description | Aqueous Zn batteries have drawn tremendous attention for their several advantages. However, the challenges of Zn anodes such as the corrosion and ZnO densification have compromised their application in rechargeable Zn‐based batteries. In this paper, a straightforward strategy is employed to facilitate the uniform Zn stripping/plating of the Zn anode through using a ZrO2 coating layer, which contributes to the controllable nucleation sites for Zn2+ and fast Zn2+ transportation through the favorable Maxwell–Wagner polarization. As a result, the low polarization (24 mV at 0.25 mA cm−2), high Coulombic efficiency (99.36% at 20 mA cm−2), and long cycle life (over 3800 h at 0.25 mA cm−2) can be obtained for the ZrO2‐coated Zn anode. It is believed that the ZrO2 coating layer can also act as an inert physical barrier to decrease the contact of the anode and electrolyte, thus reducing both the Zn corrosion and formation of ZnO densification, and then improve the reversibility of Zn anode. The results demonstrated in this work provide an appealing strategy for the future development of rechargeable Zn‐based batteries.
A highly reversible Zn anode is achieved through controllable nucleation sites for Zn2+ and fast Zn2+ transportation under the favorable Maxwell–Wagner polarization, in which a low polarization (24 mV), high Coulombic efficiency (99.36%), and long cycle life (over 3800 h) are obtained by employing a ZrO2‐coating layer. |
doi_str_mv | 10.1002/adfm.201908528 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2383178217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2383178217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4228-c9f6f94deecedc865f943d9dea9c2a138da8d5f328b30098d77c855cbaf168313</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKtb1wHXU_PozGSWbW2tUBV8gLgJmTw0ZTqpyVSZnT_B3-gvMWWkLl3dey7fORcOAKcYDTBC5FwosxoQhAvEUsL2QA9nOEsoImx_t-OnQ3AUwhIhnOd02AN2bl9eqxbe6Xftgy0rDZ9rOKqd0nBai6gVLFs4cXXjXVVtD3Dm_Eo01tXQGXizkZXu1L1tdIDG-Rjx_fk1FiGax6JptLc6HIMDI6qgT35nHzzOpg-TebK4vbyajBaJHBLCElmYzBRDpbXUSrIsjYKqQmlRSCIwZUowlRpKWEkRKpjKc8nSVJbC4IxRTPvgrMtde_e20aHhS7fxdXzJCY1AzgjOIzXoKOldCF4bvvZ2JXzLMeLbOvm2Tr6rMxqKzvBhK93-Q_PRxez6z_sDCI97TQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383178217</pqid></control><display><type>article</type><title>Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Zn‐Based Batteries</title><source>Wiley Journals</source><creator>Liang, Pengcheng ; Yi, Jin ; Liu, Xiaoyu ; Wu, Kai ; Wang, Zhuo ; Cui, Jin ; Liu, Yuyu ; Wang, Yonggang ; Xia, Yongyao ; Zhang, Jiujun</creator><creatorcontrib>Liang, Pengcheng ; Yi, Jin ; Liu, Xiaoyu ; Wu, Kai ; Wang, Zhuo ; Cui, Jin ; Liu, Yuyu ; Wang, Yonggang ; Xia, Yongyao ; Zhang, Jiujun</creatorcontrib><description>Aqueous Zn batteries have drawn tremendous attention for their several advantages. However, the challenges of Zn anodes such as the corrosion and ZnO densification have compromised their application in rechargeable Zn‐based batteries. In this paper, a straightforward strategy is employed to facilitate the uniform Zn stripping/plating of the Zn anode through using a ZrO2 coating layer, which contributes to the controllable nucleation sites for Zn2+ and fast Zn2+ transportation through the favorable Maxwell–Wagner polarization. As a result, the low polarization (24 mV at 0.25 mA cm−2), high Coulombic efficiency (99.36% at 20 mA cm−2), and long cycle life (over 3800 h at 0.25 mA cm−2) can be obtained for the ZrO2‐coated Zn anode. It is believed that the ZrO2 coating layer can also act as an inert physical barrier to decrease the contact of the anode and electrolyte, thus reducing both the Zn corrosion and formation of ZnO densification, and then improve the reversibility of Zn anode. The results demonstrated in this work provide an appealing strategy for the future development of rechargeable Zn‐based batteries.
A highly reversible Zn anode is achieved through controllable nucleation sites for Zn2+ and fast Zn2+ transportation under the favorable Maxwell–Wagner polarization, in which a low polarization (24 mV), high Coulombic efficiency (99.36%), and long cycle life (over 3800 h) are obtained by employing a ZrO2‐coating layer.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201908528</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Anodic coatings ; Barriers ; controllable nucleation ; Densification ; Electrode polarization ; Materials science ; Nucleation ; Rechargeable batteries ; surface modification ; Zinc oxide ; Zirconium dioxide ; Zn anodes ; Zn corrosion ; Zn‐based batteries</subject><ispartof>Advanced functional materials, 2020-03, Vol.30 (13), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4228-c9f6f94deecedc865f943d9dea9c2a138da8d5f328b30098d77c855cbaf168313</citedby><cites>FETCH-LOGICAL-c4228-c9f6f94deecedc865f943d9dea9c2a138da8d5f328b30098d77c855cbaf168313</cites><orcidid>0000-0001-6379-9655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201908528$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201908528$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Liang, Pengcheng</creatorcontrib><creatorcontrib>Yi, Jin</creatorcontrib><creatorcontrib>Liu, Xiaoyu</creatorcontrib><creatorcontrib>Wu, Kai</creatorcontrib><creatorcontrib>Wang, Zhuo</creatorcontrib><creatorcontrib>Cui, Jin</creatorcontrib><creatorcontrib>Liu, Yuyu</creatorcontrib><creatorcontrib>Wang, Yonggang</creatorcontrib><creatorcontrib>Xia, Yongyao</creatorcontrib><creatorcontrib>Zhang, Jiujun</creatorcontrib><title>Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Zn‐Based Batteries</title><title>Advanced functional materials</title><description>Aqueous Zn batteries have drawn tremendous attention for their several advantages. However, the challenges of Zn anodes such as the corrosion and ZnO densification have compromised their application in rechargeable Zn‐based batteries. In this paper, a straightforward strategy is employed to facilitate the uniform Zn stripping/plating of the Zn anode through using a ZrO2 coating layer, which contributes to the controllable nucleation sites for Zn2+ and fast Zn2+ transportation through the favorable Maxwell–Wagner polarization. As a result, the low polarization (24 mV at 0.25 mA cm−2), high Coulombic efficiency (99.36% at 20 mA cm−2), and long cycle life (over 3800 h at 0.25 mA cm−2) can be obtained for the ZrO2‐coated Zn anode. It is believed that the ZrO2 coating layer can also act as an inert physical barrier to decrease the contact of the anode and electrolyte, thus reducing both the Zn corrosion and formation of ZnO densification, and then improve the reversibility of Zn anode. The results demonstrated in this work provide an appealing strategy for the future development of rechargeable Zn‐based batteries.
A highly reversible Zn anode is achieved through controllable nucleation sites for Zn2+ and fast Zn2+ transportation under the favorable Maxwell–Wagner polarization, in which a low polarization (24 mV), high Coulombic efficiency (99.36%), and long cycle life (over 3800 h) are obtained by employing a ZrO2‐coating layer.</description><subject>Anodes</subject><subject>Anodic coatings</subject><subject>Barriers</subject><subject>controllable nucleation</subject><subject>Densification</subject><subject>Electrode polarization</subject><subject>Materials science</subject><subject>Nucleation</subject><subject>Rechargeable batteries</subject><subject>surface modification</subject><subject>Zinc oxide</subject><subject>Zirconium dioxide</subject><subject>Zn anodes</subject><subject>Zn corrosion</subject><subject>Zn‐based batteries</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKtb1wHXU_PozGSWbW2tUBV8gLgJmTw0ZTqpyVSZnT_B3-gvMWWkLl3dey7fORcOAKcYDTBC5FwosxoQhAvEUsL2QA9nOEsoImx_t-OnQ3AUwhIhnOd02AN2bl9eqxbe6Xftgy0rDZ9rOKqd0nBai6gVLFs4cXXjXVVtD3Dm_Eo01tXQGXizkZXu1L1tdIDG-Rjx_fk1FiGax6JptLc6HIMDI6qgT35nHzzOpg-TebK4vbyajBaJHBLCElmYzBRDpbXUSrIsjYKqQmlRSCIwZUowlRpKWEkRKpjKc8nSVJbC4IxRTPvgrMtde_e20aHhS7fxdXzJCY1AzgjOIzXoKOldCF4bvvZ2JXzLMeLbOvm2Tr6rMxqKzvBhK93-Q_PRxez6z_sDCI97TQ</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Liang, Pengcheng</creator><creator>Yi, Jin</creator><creator>Liu, Xiaoyu</creator><creator>Wu, Kai</creator><creator>Wang, Zhuo</creator><creator>Cui, Jin</creator><creator>Liu, Yuyu</creator><creator>Wang, Yonggang</creator><creator>Xia, Yongyao</creator><creator>Zhang, Jiujun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6379-9655</orcidid></search><sort><creationdate>20200301</creationdate><title>Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Zn‐Based Batteries</title><author>Liang, Pengcheng ; Yi, Jin ; Liu, Xiaoyu ; Wu, Kai ; Wang, Zhuo ; Cui, Jin ; Liu, Yuyu ; Wang, Yonggang ; Xia, Yongyao ; Zhang, Jiujun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4228-c9f6f94deecedc865f943d9dea9c2a138da8d5f328b30098d77c855cbaf168313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anodes</topic><topic>Anodic coatings</topic><topic>Barriers</topic><topic>controllable nucleation</topic><topic>Densification</topic><topic>Electrode polarization</topic><topic>Materials science</topic><topic>Nucleation</topic><topic>Rechargeable batteries</topic><topic>surface modification</topic><topic>Zinc oxide</topic><topic>Zirconium dioxide</topic><topic>Zn anodes</topic><topic>Zn corrosion</topic><topic>Zn‐based batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Pengcheng</creatorcontrib><creatorcontrib>Yi, Jin</creatorcontrib><creatorcontrib>Liu, Xiaoyu</creatorcontrib><creatorcontrib>Wu, Kai</creatorcontrib><creatorcontrib>Wang, Zhuo</creatorcontrib><creatorcontrib>Cui, Jin</creatorcontrib><creatorcontrib>Liu, Yuyu</creatorcontrib><creatorcontrib>Wang, Yonggang</creatorcontrib><creatorcontrib>Xia, Yongyao</creatorcontrib><creatorcontrib>Zhang, Jiujun</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Pengcheng</au><au>Yi, Jin</au><au>Liu, Xiaoyu</au><au>Wu, Kai</au><au>Wang, Zhuo</au><au>Cui, Jin</au><au>Liu, Yuyu</au><au>Wang, Yonggang</au><au>Xia, Yongyao</au><au>Zhang, Jiujun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Zn‐Based Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>30</volume><issue>13</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Aqueous Zn batteries have drawn tremendous attention for their several advantages. However, the challenges of Zn anodes such as the corrosion and ZnO densification have compromised their application in rechargeable Zn‐based batteries. In this paper, a straightforward strategy is employed to facilitate the uniform Zn stripping/plating of the Zn anode through using a ZrO2 coating layer, which contributes to the controllable nucleation sites for Zn2+ and fast Zn2+ transportation through the favorable Maxwell–Wagner polarization. As a result, the low polarization (24 mV at 0.25 mA cm−2), high Coulombic efficiency (99.36% at 20 mA cm−2), and long cycle life (over 3800 h at 0.25 mA cm−2) can be obtained for the ZrO2‐coated Zn anode. It is believed that the ZrO2 coating layer can also act as an inert physical barrier to decrease the contact of the anode and electrolyte, thus reducing both the Zn corrosion and formation of ZnO densification, and then improve the reversibility of Zn anode. The results demonstrated in this work provide an appealing strategy for the future development of rechargeable Zn‐based batteries.
A highly reversible Zn anode is achieved through controllable nucleation sites for Zn2+ and fast Zn2+ transportation under the favorable Maxwell–Wagner polarization, in which a low polarization (24 mV), high Coulombic efficiency (99.36%), and long cycle life (over 3800 h) are obtained by employing a ZrO2‐coating layer.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201908528</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6379-9655</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2020-03, Vol.30 (13), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2383178217 |
source | Wiley Journals |
subjects | Anodes Anodic coatings Barriers controllable nucleation Densification Electrode polarization Materials science Nucleation Rechargeable batteries surface modification Zinc oxide Zirconium dioxide Zn anodes Zn corrosion Zn‐based batteries |
title | Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Zn‐Based Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A22%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Reversible%20Zn%20Anode%20Enabled%20by%20Controllable%20Formation%20of%20Nucleation%20Sites%20for%20Zn%E2%80%90Based%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Liang,%20Pengcheng&rft.date=2020-03-01&rft.volume=30&rft.issue=13&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201908528&rft_dat=%3Cproquest_cross%3E2383178217%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2383178217&rft_id=info:pmid/&rfr_iscdi=true |