Pore Fractal Characteristics of Hydrate‐Bearing Sands and Implications to the Saturated Water Permeability
Permeability mainly governs fluid flow through hydrate‐bearing sediments, and its theoretical models play a primary role in the efficiency prediction of gas recovery from hydrate reservoirs by using numerical simulators. Most of these numerical simulators rely on empirical or semiempirical permeabil...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Solid earth 2020-03, Vol.125 (3), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Journal of geophysical research. Solid earth |
container_volume | 125 |
creator | Zhang, Zhun Li, Chengfeng Ning, Fulong Liu, Lele Cai, Jianchao Liu, Changling Wu, Nengyou Wang, Daigang |
description | Permeability mainly governs fluid flow through hydrate‐bearing sediments, and its theoretical models play a primary role in the efficiency prediction of gas recovery from hydrate reservoirs by using numerical simulators. Most of these numerical simulators rely on empirical or semiempirical permeability models largely due to the lack of suitable parameters that well quantify the evolution of pore structures. In this study, X‐ray computed tomography scans are conducted on methane hydrate‐bearing sands, followed by extractions of the maximal diameter and fractal dimensions for the pore space occupied by fluids. These extracted parameters, including area and volume pore‐size fractal dimensions, tortuosity fractal dimension, and the area maximal pore diameter, are further extended to develop fractal theory‐based models for predictions of the hydraulic tortuosity and the saturated water permeability in hydrate‐bearing sands. Results show that the pore space occupied by fluids within hydrate‐bearing sands is inherently fractal. The area pore‐size fractal dimension decreases but the tortuosity fractal dimension changes little with increasing hydrate saturation, and the sum of these two fractal dimensions can be used to predict the volume pore‐size fractal dimension. In addition, the area maximal pore diameter decreases with increasing hydrate saturation, and a semiempirical model is proposed. The fractal theory‐based permeability reduction model agrees well with available experimental data, and it can capture the essential physics of saturated water permeability reduction in hydrate‐bearing sediments during hydrate formation.
Key Points
X‐ray computed tomography images show that the pore space occupied by fluids within hydrate‐bearing sands is inherently fractal
Effects of methane hydrate on pore fractal characteristics of hydrate‐bearing sands are quantified
A proposed fractal model for hydrate‐bearing sands depicts the saturated water permeability reduction due to hydrate formation |
doi_str_mv | 10.1029/2019JB018721 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2383125346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2383125346</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3731-13ea8694c7199daade43a3e24956b6b8d1409182ad1af1a89cb5743bbe21e4d73</originalsourceid><addsrcrecordid>eNp9kM1KAzEQxxdRsNTefICAV1czSfYjR1vsFwXFDzwus5usTdl2a5Iie_MRfEafxJSKeHIO__kz85sZmCg6B3oFlMlrRkHOhxTyjMFR1GOQyljyJD3-9cBPo4FzKxoiDyUQvai5b60mY4uVx4aMlrh32hrnTeVIW5Nppyx6_fXxOdRozeaVPOJGORKEzNbbxlToTbtxxLfEL3Xo-t1-QJGXoJbca7vWWJrG-O4sOqmxcXrwk_vR8_j2aTSNF3eT2ehmESPPOMTANeapFFUGUipEpQVHrpmQSVqmZa5AUAk5QwVYA-ayKpNM8LLUDLRQGe9HF4e9W9u-7bTzxard2U04WTCec2AJF2mgLg9UZVvnrK6LrTVrtF0BtNi_tPj70oDzA_5uGt39yxbzycMwEVQA_wYxi3ih</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383125346</pqid></control><display><type>article</type><title>Pore Fractal Characteristics of Hydrate‐Bearing Sands and Implications to the Saturated Water Permeability</title><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><creator>Zhang, Zhun ; Li, Chengfeng ; Ning, Fulong ; Liu, Lele ; Cai, Jianchao ; Liu, Changling ; Wu, Nengyou ; Wang, Daigang</creator><creatorcontrib>Zhang, Zhun ; Li, Chengfeng ; Ning, Fulong ; Liu, Lele ; Cai, Jianchao ; Liu, Changling ; Wu, Nengyou ; Wang, Daigang</creatorcontrib><description>Permeability mainly governs fluid flow through hydrate‐bearing sediments, and its theoretical models play a primary role in the efficiency prediction of gas recovery from hydrate reservoirs by using numerical simulators. Most of these numerical simulators rely on empirical or semiempirical permeability models largely due to the lack of suitable parameters that well quantify the evolution of pore structures. In this study, X‐ray computed tomography scans are conducted on methane hydrate‐bearing sands, followed by extractions of the maximal diameter and fractal dimensions for the pore space occupied by fluids. These extracted parameters, including area and volume pore‐size fractal dimensions, tortuosity fractal dimension, and the area maximal pore diameter, are further extended to develop fractal theory‐based models for predictions of the hydraulic tortuosity and the saturated water permeability in hydrate‐bearing sands. Results show that the pore space occupied by fluids within hydrate‐bearing sands is inherently fractal. The area pore‐size fractal dimension decreases but the tortuosity fractal dimension changes little with increasing hydrate saturation, and the sum of these two fractal dimensions can be used to predict the volume pore‐size fractal dimension. In addition, the area maximal pore diameter decreases with increasing hydrate saturation, and a semiempirical model is proposed. The fractal theory‐based permeability reduction model agrees well with available experimental data, and it can capture the essential physics of saturated water permeability reduction in hydrate‐bearing sediments during hydrate formation.
Key Points
X‐ray computed tomography images show that the pore space occupied by fluids within hydrate‐bearing sands is inherently fractal
Effects of methane hydrate on pore fractal characteristics of hydrate‐bearing sands are quantified
A proposed fractal model for hydrate‐bearing sands depicts the saturated water permeability reduction due to hydrate formation</description><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1029/2019JB018721</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Area ; Bearing ; Computational fluid dynamics ; Computed tomography ; Computer simulation ; Diameters ; Dimensions ; Flight simulators ; Fluid flow ; Fluids ; fractal ; Fractal geometry ; Fractal models ; Fractals ; Gas recovery ; Geophysics ; Hydrates ; hydrate‐bearing sediments ; Membrane permeability ; Methane hydrates ; Parameters ; Permeability ; Physics ; pore structure ; Reduction ; Sand ; Saturation ; Sediment ; Sediments ; Simulators ; Tomography ; Tortuosity</subject><ispartof>Journal of geophysical research. Solid earth, 2020-03, Vol.125 (3), p.n/a</ispartof><rights>2020. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3731-13ea8694c7199daade43a3e24956b6b8d1409182ad1af1a89cb5743bbe21e4d73</citedby><cites>FETCH-LOGICAL-a3731-13ea8694c7199daade43a3e24956b6b8d1409182ad1af1a89cb5743bbe21e4d73</cites><orcidid>0000-0003-1236-586X ; 0000-0001-6967-5477 ; 0000-0003-2950-888X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2019JB018721$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2019JB018721$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27923,27924,45573,45574,46408,46832</link.rule.ids></links><search><creatorcontrib>Zhang, Zhun</creatorcontrib><creatorcontrib>Li, Chengfeng</creatorcontrib><creatorcontrib>Ning, Fulong</creatorcontrib><creatorcontrib>Liu, Lele</creatorcontrib><creatorcontrib>Cai, Jianchao</creatorcontrib><creatorcontrib>Liu, Changling</creatorcontrib><creatorcontrib>Wu, Nengyou</creatorcontrib><creatorcontrib>Wang, Daigang</creatorcontrib><title>Pore Fractal Characteristics of Hydrate‐Bearing Sands and Implications to the Saturated Water Permeability</title><title>Journal of geophysical research. Solid earth</title><description>Permeability mainly governs fluid flow through hydrate‐bearing sediments, and its theoretical models play a primary role in the efficiency prediction of gas recovery from hydrate reservoirs by using numerical simulators. Most of these numerical simulators rely on empirical or semiempirical permeability models largely due to the lack of suitable parameters that well quantify the evolution of pore structures. In this study, X‐ray computed tomography scans are conducted on methane hydrate‐bearing sands, followed by extractions of the maximal diameter and fractal dimensions for the pore space occupied by fluids. These extracted parameters, including area and volume pore‐size fractal dimensions, tortuosity fractal dimension, and the area maximal pore diameter, are further extended to develop fractal theory‐based models for predictions of the hydraulic tortuosity and the saturated water permeability in hydrate‐bearing sands. Results show that the pore space occupied by fluids within hydrate‐bearing sands is inherently fractal. The area pore‐size fractal dimension decreases but the tortuosity fractal dimension changes little with increasing hydrate saturation, and the sum of these two fractal dimensions can be used to predict the volume pore‐size fractal dimension. In addition, the area maximal pore diameter decreases with increasing hydrate saturation, and a semiempirical model is proposed. The fractal theory‐based permeability reduction model agrees well with available experimental data, and it can capture the essential physics of saturated water permeability reduction in hydrate‐bearing sediments during hydrate formation.
Key Points
X‐ray computed tomography images show that the pore space occupied by fluids within hydrate‐bearing sands is inherently fractal
Effects of methane hydrate on pore fractal characteristics of hydrate‐bearing sands are quantified
A proposed fractal model for hydrate‐bearing sands depicts the saturated water permeability reduction due to hydrate formation</description><subject>Area</subject><subject>Bearing</subject><subject>Computational fluid dynamics</subject><subject>Computed tomography</subject><subject>Computer simulation</subject><subject>Diameters</subject><subject>Dimensions</subject><subject>Flight simulators</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>fractal</subject><subject>Fractal geometry</subject><subject>Fractal models</subject><subject>Fractals</subject><subject>Gas recovery</subject><subject>Geophysics</subject><subject>Hydrates</subject><subject>hydrate‐bearing sediments</subject><subject>Membrane permeability</subject><subject>Methane hydrates</subject><subject>Parameters</subject><subject>Permeability</subject><subject>Physics</subject><subject>pore structure</subject><subject>Reduction</subject><subject>Sand</subject><subject>Saturation</subject><subject>Sediment</subject><subject>Sediments</subject><subject>Simulators</subject><subject>Tomography</subject><subject>Tortuosity</subject><issn>2169-9313</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEQxxdRsNTefICAV1czSfYjR1vsFwXFDzwus5usTdl2a5Iie_MRfEafxJSKeHIO__kz85sZmCg6B3oFlMlrRkHOhxTyjMFR1GOQyljyJD3-9cBPo4FzKxoiDyUQvai5b60mY4uVx4aMlrh32hrnTeVIW5Nppyx6_fXxOdRozeaVPOJGORKEzNbbxlToTbtxxLfEL3Xo-t1-QJGXoJbca7vWWJrG-O4sOqmxcXrwk_vR8_j2aTSNF3eT2ehmESPPOMTANeapFFUGUipEpQVHrpmQSVqmZa5AUAk5QwVYA-ayKpNM8LLUDLRQGe9HF4e9W9u-7bTzxard2U04WTCec2AJF2mgLg9UZVvnrK6LrTVrtF0BtNi_tPj70oDzA_5uGt39yxbzycMwEVQA_wYxi3ih</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Zhang, Zhun</creator><creator>Li, Chengfeng</creator><creator>Ning, Fulong</creator><creator>Liu, Lele</creator><creator>Cai, Jianchao</creator><creator>Liu, Changling</creator><creator>Wu, Nengyou</creator><creator>Wang, Daigang</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1236-586X</orcidid><orcidid>https://orcid.org/0000-0001-6967-5477</orcidid><orcidid>https://orcid.org/0000-0003-2950-888X</orcidid></search><sort><creationdate>202003</creationdate><title>Pore Fractal Characteristics of Hydrate‐Bearing Sands and Implications to the Saturated Water Permeability</title><author>Zhang, Zhun ; Li, Chengfeng ; Ning, Fulong ; Liu, Lele ; Cai, Jianchao ; Liu, Changling ; Wu, Nengyou ; Wang, Daigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3731-13ea8694c7199daade43a3e24956b6b8d1409182ad1af1a89cb5743bbe21e4d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Area</topic><topic>Bearing</topic><topic>Computational fluid dynamics</topic><topic>Computed tomography</topic><topic>Computer simulation</topic><topic>Diameters</topic><topic>Dimensions</topic><topic>Flight simulators</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>fractal</topic><topic>Fractal geometry</topic><topic>Fractal models</topic><topic>Fractals</topic><topic>Gas recovery</topic><topic>Geophysics</topic><topic>Hydrates</topic><topic>hydrate‐bearing sediments</topic><topic>Membrane permeability</topic><topic>Methane hydrates</topic><topic>Parameters</topic><topic>Permeability</topic><topic>Physics</topic><topic>pore structure</topic><topic>Reduction</topic><topic>Sand</topic><topic>Saturation</topic><topic>Sediment</topic><topic>Sediments</topic><topic>Simulators</topic><topic>Tomography</topic><topic>Tortuosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhun</creatorcontrib><creatorcontrib>Li, Chengfeng</creatorcontrib><creatorcontrib>Ning, Fulong</creatorcontrib><creatorcontrib>Liu, Lele</creatorcontrib><creatorcontrib>Cai, Jianchao</creatorcontrib><creatorcontrib>Liu, Changling</creatorcontrib><creatorcontrib>Wu, Nengyou</creatorcontrib><creatorcontrib>Wang, Daigang</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of geophysical research. Solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhun</au><au>Li, Chengfeng</au><au>Ning, Fulong</au><au>Liu, Lele</au><au>Cai, Jianchao</au><au>Liu, Changling</au><au>Wu, Nengyou</au><au>Wang, Daigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pore Fractal Characteristics of Hydrate‐Bearing Sands and Implications to the Saturated Water Permeability</atitle><jtitle>Journal of geophysical research. Solid earth</jtitle><date>2020-03</date><risdate>2020</risdate><volume>125</volume><issue>3</issue><epage>n/a</epage><issn>2169-9313</issn><eissn>2169-9356</eissn><abstract>Permeability mainly governs fluid flow through hydrate‐bearing sediments, and its theoretical models play a primary role in the efficiency prediction of gas recovery from hydrate reservoirs by using numerical simulators. Most of these numerical simulators rely on empirical or semiempirical permeability models largely due to the lack of suitable parameters that well quantify the evolution of pore structures. In this study, X‐ray computed tomography scans are conducted on methane hydrate‐bearing sands, followed by extractions of the maximal diameter and fractal dimensions for the pore space occupied by fluids. These extracted parameters, including area and volume pore‐size fractal dimensions, tortuosity fractal dimension, and the area maximal pore diameter, are further extended to develop fractal theory‐based models for predictions of the hydraulic tortuosity and the saturated water permeability in hydrate‐bearing sands. Results show that the pore space occupied by fluids within hydrate‐bearing sands is inherently fractal. The area pore‐size fractal dimension decreases but the tortuosity fractal dimension changes little with increasing hydrate saturation, and the sum of these two fractal dimensions can be used to predict the volume pore‐size fractal dimension. In addition, the area maximal pore diameter decreases with increasing hydrate saturation, and a semiempirical model is proposed. The fractal theory‐based permeability reduction model agrees well with available experimental data, and it can capture the essential physics of saturated water permeability reduction in hydrate‐bearing sediments during hydrate formation.
Key Points
X‐ray computed tomography images show that the pore space occupied by fluids within hydrate‐bearing sands is inherently fractal
Effects of methane hydrate on pore fractal characteristics of hydrate‐bearing sands are quantified
A proposed fractal model for hydrate‐bearing sands depicts the saturated water permeability reduction due to hydrate formation</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2019JB018721</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-1236-586X</orcidid><orcidid>https://orcid.org/0000-0001-6967-5477</orcidid><orcidid>https://orcid.org/0000-0003-2950-888X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9313 |
ispartof | Journal of geophysical research. Solid earth, 2020-03, Vol.125 (3), p.n/a |
issn | 2169-9313 2169-9356 |
language | eng |
recordid | cdi_proquest_journals_2383125346 |
source | Wiley Free Content; Wiley Online Library All Journals |
subjects | Area Bearing Computational fluid dynamics Computed tomography Computer simulation Diameters Dimensions Flight simulators Fluid flow Fluids fractal Fractal geometry Fractal models Fractals Gas recovery Geophysics Hydrates hydrate‐bearing sediments Membrane permeability Methane hydrates Parameters Permeability Physics pore structure Reduction Sand Saturation Sediment Sediments Simulators Tomography Tortuosity |
title | Pore Fractal Characteristics of Hydrate‐Bearing Sands and Implications to the Saturated Water Permeability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A45%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pore%20Fractal%20Characteristics%20of%20Hydrate%E2%80%90Bearing%20Sands%20and%20Implications%20to%20the%20Saturated%20Water%20Permeability&rft.jtitle=Journal%20of%20geophysical%20research.%20Solid%20earth&rft.au=Zhang,%20Zhun&rft.date=2020-03&rft.volume=125&rft.issue=3&rft.epage=n/a&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1029/2019JB018721&rft_dat=%3Cproquest_cross%3E2383125346%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2383125346&rft_id=info:pmid/&rfr_iscdi=true |