Crustal Composition and Moho Variations of the Central and Eastern United States: Improving Resolution and Geologic Interpretation of EarthScope USArray Seismic Images Using Gravity

EarthScope's USArray Transportable Array has shortcomings for the purpose of interpreting geologic features of wavelengths less than the Transportable Array station spacing, but these can be overcome by using higher spatial resolution gravity data. In this study, we exploit USArray receiver fun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Solid earth 2020-03, Vol.125 (3), p.n/a
Hauptverfasser: Zhang, H. L., Ravat, D., Lowry, A. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:EarthScope's USArray Transportable Array has shortcomings for the purpose of interpreting geologic features of wavelengths less than the Transportable Array station spacing, but these can be overcome by using higher spatial resolution gravity data. In this study, we exploit USArray receiver functions to reduce nonuniqueness in the interpretation of gravity anomalies. We model gravity anomalies from previously derived density variations of sedimentary basins, crustal Vp/Vs variation, Moho variation, and upper mantle density variation derived from body wave imaging informed by surface wave tomography to estimate Vp/Vs. Although average densities and density contrasts for these seismic variations can be derived, the gravity anomalies modeled from them do not explain the entire observed gravity anomaly field in the United States. We use the unmodeled gravity anomalies (residuals) to reconstruct local variations in densities of the crust associated with geologic sources. The approach uses velocity‐density relationships and differs from density computations that assume isostatic compensation. These intracrustal densities identify geologic sources not sampled by and, in some cases, aliased by the USArray station spacing. We show an example of this improvement in the vicinity of the Bloomfield Pluton, north of the bootheel of Missouri, in the central United States. Key Points Central and eastern U.S. Moho density contrast and velocity‐density relationships for crustal and upper mantle Vp/Vs ratios are estimated using gravity data Denser sampling of gravity data interpolates seismic models and reduces aliasing of geologic features caused by the USArray station spacing High‐resolution crustal density variation constrained by seismic information in the central and eastern United States provides detailed information for interpretation
ISSN:2169-9313
2169-9356
DOI:10.1029/2019JB018537