Model-Based Geostatistics from a Bayesian Perspective: Investigating Area-to-Point Kriging with Small Data Sets

Area-to-point kriging (ATPK) is a geostatistical method for creating high-resolution raster maps using data of the variable of interest with a much lower resolution. The data set of areal means is often considerably smaller ( < 50 observations) than data sets conventionally dealt with in geostati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical geosciences 2020-04, Vol.52 (3), p.397-423
Hauptverfasser: Steinbuch, Luc, Orton, Thomas G., Brus, Dick J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 423
container_issue 3
container_start_page 397
container_title Mathematical geosciences
container_volume 52
creator Steinbuch, Luc
Orton, Thomas G.
Brus, Dick J.
description Area-to-point kriging (ATPK) is a geostatistical method for creating high-resolution raster maps using data of the variable of interest with a much lower resolution. The data set of areal means is often considerably smaller ( < 50 observations) than data sets conventionally dealt with in geostatistical analyses. In contemporary ATPK methods, uncertainty in the variogram parameters is not accounted for in the prediction; this issue can be overcome by applying ATPK in a Bayesian framework. Commonly in Bayesian statistics, posterior distributions of model parameters and posterior predictive distributions are approximated by Markov chain Monte Carlo sampling from the posterior, which can be computationally expensive. Therefore, a partly analytical solution is implemented in this paper, in order to (i) explore the impact of the prior distribution on predictions and prediction variances, (ii) investigate whether certain aspects of uncertainty can be disregarded, simplifying the necessary computations, and (iii) test the impact of various model misspecifications. Several approaches using simulated data, aggregated real-world point data, and a case study on aggregated crop yields in Burkina Faso are compared. The prior distribution is found to have minimal impact on the disaggregated predictions. In most cases with known short-range behaviour, an approach that disregards uncertainty in the variogram distance parameter gives a reasonable assessment of prediction uncertainty. However, some severe effects of model misspecification in terms of overly conservative or optimistic prediction uncertainties are found, highlighting the importance of model choice or integration into ATPK.
doi_str_mv 10.1007/s11004-019-09840-6
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2383064536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2383064536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-fbbc61eafbd7a92128c75d312c4ba9dbd51b856de07fae8b244e410510c28b193</originalsourceid><addsrcrecordid>eNqNkF1vVCEQhonRxLr2D3hF4qWhMnA-ON61q62NNW1SvSbAmbPS7MIKbJv-ezkeU--MVzMhz8vMPIS8AX4CnPfvM9TSMA4D44NqOOuekSNQfcPU0MrnT30HL8mrnO8470C2cETi1zjilp2ZjCO9wJiLKT4X7zKdUtxRQ8_MI2ZvAr3BlPfoir_HD_Qy3GPFNpUOG3qa0LAS2U30odAvyW_m1wdfftDbndlu6UdTDL3Fkl-TF5PZZjz-U1fk-_mnb-vP7Or64nJ9esWc7GRhk7WuAzSTHXszCBDK9e0oQbjGmmG0YwtWtd2IvJ8MKiuaBhvgLXAnlIVBrsjb5d99ij8PdVV9Fw8p1JFaSCV517R10IqIhXIp5pxw0vvkdyY9auB6FqsXsbqK1b_F6jn0bgk9oI1Tdh6Dw6cg57wVMHSDqB2fafX_9NrP-mNYx0MoNSqXaK542GD6e8M_1vsF9NmdAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383064536</pqid></control><display><type>article</type><title>Model-Based Geostatistics from a Bayesian Perspective: Investigating Area-to-Point Kriging with Small Data Sets</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Steinbuch, Luc ; Orton, Thomas G. ; Brus, Dick J.</creator><creatorcontrib>Steinbuch, Luc ; Orton, Thomas G. ; Brus, Dick J.</creatorcontrib><description>Area-to-point kriging (ATPK) is a geostatistical method for creating high-resolution raster maps using data of the variable of interest with a much lower resolution. The data set of areal means is often considerably smaller ( &lt; 50 observations) than data sets conventionally dealt with in geostatistical analyses. In contemporary ATPK methods, uncertainty in the variogram parameters is not accounted for in the prediction; this issue can be overcome by applying ATPK in a Bayesian framework. Commonly in Bayesian statistics, posterior distributions of model parameters and posterior predictive distributions are approximated by Markov chain Monte Carlo sampling from the posterior, which can be computationally expensive. Therefore, a partly analytical solution is implemented in this paper, in order to (i) explore the impact of the prior distribution on predictions and prediction variances, (ii) investigate whether certain aspects of uncertainty can be disregarded, simplifying the necessary computations, and (iii) test the impact of various model misspecifications. Several approaches using simulated data, aggregated real-world point data, and a case study on aggregated crop yields in Burkina Faso are compared. The prior distribution is found to have minimal impact on the disaggregated predictions. In most cases with known short-range behaviour, an approach that disregards uncertainty in the variogram distance parameter gives a reasonable assessment of prediction uncertainty. However, some severe effects of model misspecification in terms of overly conservative or optimistic prediction uncertainties are found, highlighting the importance of model choice or integration into ATPK.</description><identifier>ISSN: 1874-8961</identifier><identifier>EISSN: 1874-8953</identifier><identifier>DOI: 10.1007/s11004-019-09840-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bayesian analysis ; Chemistry and Earth Sciences ; Computer Science ; Computer simulation ; Crop yield ; Data ; Datasets ; Distribution ; Earth and Environmental Science ; Earth Sciences ; Exact solutions ; Geology ; Geosciences, Multidisciplinary ; Geostatistics ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Kriging interpolation ; Markov chains ; Mathematical models ; Mathematics ; Mathematics, Interdisciplinary Applications ; Parameter uncertainty ; Parameters ; Physical Sciences ; Physics ; Predictions ; Probability theory ; Resolution ; Science &amp; Technology ; Special Issue ; Statistical methods ; Statistics for Engineering ; Uncertainty</subject><ispartof>Mathematical geosciences, 2020-04, Vol.52 (3), p.397-423</ispartof><rights>The Author(s) 2019</rights><rights>This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>2</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000521969200006</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c363t-fbbc61eafbd7a92128c75d312c4ba9dbd51b856de07fae8b244e410510c28b193</citedby><cites>FETCH-LOGICAL-c363t-fbbc61eafbd7a92128c75d312c4ba9dbd51b856de07fae8b244e410510c28b193</cites><orcidid>0000-0001-6484-0920 ; 0000-0001-6914-6129 ; 0000-0003-2194-4783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11004-019-09840-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11004-019-09840-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,27933,27934,28257,41497,42566,51328</link.rule.ids></links><search><creatorcontrib>Steinbuch, Luc</creatorcontrib><creatorcontrib>Orton, Thomas G.</creatorcontrib><creatorcontrib>Brus, Dick J.</creatorcontrib><title>Model-Based Geostatistics from a Bayesian Perspective: Investigating Area-to-Point Kriging with Small Data Sets</title><title>Mathematical geosciences</title><addtitle>Math Geosci</addtitle><addtitle>MATH GEOSCI</addtitle><description>Area-to-point kriging (ATPK) is a geostatistical method for creating high-resolution raster maps using data of the variable of interest with a much lower resolution. The data set of areal means is often considerably smaller ( &lt; 50 observations) than data sets conventionally dealt with in geostatistical analyses. In contemporary ATPK methods, uncertainty in the variogram parameters is not accounted for in the prediction; this issue can be overcome by applying ATPK in a Bayesian framework. Commonly in Bayesian statistics, posterior distributions of model parameters and posterior predictive distributions are approximated by Markov chain Monte Carlo sampling from the posterior, which can be computationally expensive. Therefore, a partly analytical solution is implemented in this paper, in order to (i) explore the impact of the prior distribution on predictions and prediction variances, (ii) investigate whether certain aspects of uncertainty can be disregarded, simplifying the necessary computations, and (iii) test the impact of various model misspecifications. Several approaches using simulated data, aggregated real-world point data, and a case study on aggregated crop yields in Burkina Faso are compared. The prior distribution is found to have minimal impact on the disaggregated predictions. In most cases with known short-range behaviour, an approach that disregards uncertainty in the variogram distance parameter gives a reasonable assessment of prediction uncertainty. However, some severe effects of model misspecification in terms of overly conservative or optimistic prediction uncertainties are found, highlighting the importance of model choice or integration into ATPK.</description><subject>Bayesian analysis</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Crop yield</subject><subject>Data</subject><subject>Datasets</subject><subject>Distribution</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Exact solutions</subject><subject>Geology</subject><subject>Geosciences, Multidisciplinary</subject><subject>Geostatistics</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Kriging interpolation</subject><subject>Markov chains</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics, Interdisciplinary Applications</subject><subject>Parameter uncertainty</subject><subject>Parameters</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Predictions</subject><subject>Probability theory</subject><subject>Resolution</subject><subject>Science &amp; Technology</subject><subject>Special Issue</subject><subject>Statistical methods</subject><subject>Statistics for Engineering</subject><subject>Uncertainty</subject><issn>1874-8961</issn><issn>1874-8953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkF1vVCEQhonRxLr2D3hF4qWhMnA-ON61q62NNW1SvSbAmbPS7MIKbJv-ezkeU--MVzMhz8vMPIS8AX4CnPfvM9TSMA4D44NqOOuekSNQfcPU0MrnT30HL8mrnO8470C2cETi1zjilp2ZjCO9wJiLKT4X7zKdUtxRQ8_MI2ZvAr3BlPfoir_HD_Qy3GPFNpUOG3qa0LAS2U30odAvyW_m1wdfftDbndlu6UdTDL3Fkl-TF5PZZjz-U1fk-_mnb-vP7Or64nJ9esWc7GRhk7WuAzSTHXszCBDK9e0oQbjGmmG0YwtWtd2IvJ8MKiuaBhvgLXAnlIVBrsjb5d99ij8PdVV9Fw8p1JFaSCV517R10IqIhXIp5pxw0vvkdyY9auB6FqsXsbqK1b_F6jn0bgk9oI1Tdh6Dw6cg57wVMHSDqB2fafX_9NrP-mNYx0MoNSqXaK542GD6e8M_1vsF9NmdAQ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Steinbuch, Luc</creator><creator>Orton, Thomas G.</creator><creator>Brus, Dick J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6484-0920</orcidid><orcidid>https://orcid.org/0000-0001-6914-6129</orcidid><orcidid>https://orcid.org/0000-0003-2194-4783</orcidid></search><sort><creationdate>20200401</creationdate><title>Model-Based Geostatistics from a Bayesian Perspective: Investigating Area-to-Point Kriging with Small Data Sets</title><author>Steinbuch, Luc ; Orton, Thomas G. ; Brus, Dick J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-fbbc61eafbd7a92128c75d312c4ba9dbd51b856de07fae8b244e410510c28b193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bayesian analysis</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Crop yield</topic><topic>Data</topic><topic>Datasets</topic><topic>Distribution</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Exact solutions</topic><topic>Geology</topic><topic>Geosciences, Multidisciplinary</topic><topic>Geostatistics</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Kriging interpolation</topic><topic>Markov chains</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics, Interdisciplinary Applications</topic><topic>Parameter uncertainty</topic><topic>Parameters</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Predictions</topic><topic>Probability theory</topic><topic>Resolution</topic><topic>Science &amp; Technology</topic><topic>Special Issue</topic><topic>Statistical methods</topic><topic>Statistics for Engineering</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steinbuch, Luc</creatorcontrib><creatorcontrib>Orton, Thomas G.</creatorcontrib><creatorcontrib>Brus, Dick J.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mathematical geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steinbuch, Luc</au><au>Orton, Thomas G.</au><au>Brus, Dick J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-Based Geostatistics from a Bayesian Perspective: Investigating Area-to-Point Kriging with Small Data Sets</atitle><jtitle>Mathematical geosciences</jtitle><stitle>Math Geosci</stitle><stitle>MATH GEOSCI</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>52</volume><issue>3</issue><spage>397</spage><epage>423</epage><pages>397-423</pages><issn>1874-8961</issn><eissn>1874-8953</eissn><abstract>Area-to-point kriging (ATPK) is a geostatistical method for creating high-resolution raster maps using data of the variable of interest with a much lower resolution. The data set of areal means is often considerably smaller ( &lt; 50 observations) than data sets conventionally dealt with in geostatistical analyses. In contemporary ATPK methods, uncertainty in the variogram parameters is not accounted for in the prediction; this issue can be overcome by applying ATPK in a Bayesian framework. Commonly in Bayesian statistics, posterior distributions of model parameters and posterior predictive distributions are approximated by Markov chain Monte Carlo sampling from the posterior, which can be computationally expensive. Therefore, a partly analytical solution is implemented in this paper, in order to (i) explore the impact of the prior distribution on predictions and prediction variances, (ii) investigate whether certain aspects of uncertainty can be disregarded, simplifying the necessary computations, and (iii) test the impact of various model misspecifications. Several approaches using simulated data, aggregated real-world point data, and a case study on aggregated crop yields in Burkina Faso are compared. The prior distribution is found to have minimal impact on the disaggregated predictions. In most cases with known short-range behaviour, an approach that disregards uncertainty in the variogram distance parameter gives a reasonable assessment of prediction uncertainty. However, some severe effects of model misspecification in terms of overly conservative or optimistic prediction uncertainties are found, highlighting the importance of model choice or integration into ATPK.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11004-019-09840-6</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0001-6484-0920</orcidid><orcidid>https://orcid.org/0000-0001-6914-6129</orcidid><orcidid>https://orcid.org/0000-0003-2194-4783</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1874-8961
ispartof Mathematical geosciences, 2020-04, Vol.52 (3), p.397-423
issn 1874-8961
1874-8953
language eng
recordid cdi_proquest_journals_2383064536
source SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Bayesian analysis
Chemistry and Earth Sciences
Computer Science
Computer simulation
Crop yield
Data
Datasets
Distribution
Earth and Environmental Science
Earth Sciences
Exact solutions
Geology
Geosciences, Multidisciplinary
Geostatistics
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Kriging interpolation
Markov chains
Mathematical models
Mathematics
Mathematics, Interdisciplinary Applications
Parameter uncertainty
Parameters
Physical Sciences
Physics
Predictions
Probability theory
Resolution
Science & Technology
Special Issue
Statistical methods
Statistics for Engineering
Uncertainty
title Model-Based Geostatistics from a Bayesian Perspective: Investigating Area-to-Point Kriging with Small Data Sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T00%3A59%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-Based%20Geostatistics%20from%20a%20Bayesian%20Perspective:%20Investigating%20Area-to-Point%20Kriging%20with%20Small%20Data%20Sets&rft.jtitle=Mathematical%20geosciences&rft.au=Steinbuch,%20Luc&rft.date=2020-04-01&rft.volume=52&rft.issue=3&rft.spage=397&rft.epage=423&rft.pages=397-423&rft.issn=1874-8961&rft.eissn=1874-8953&rft_id=info:doi/10.1007/s11004-019-09840-6&rft_dat=%3Cproquest_webof%3E2383064536%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2383064536&rft_id=info:pmid/&rfr_iscdi=true