Polycondensation Kinetics: 1. Bifunctional Organosilicon Monomers

Polycondensation of bifunctional organosilicon monomers as a chain unbranched process includes initiation (hydrolysis of nonreactive end groups), propagation (sequential addition of monomers and bimolecular aggregation of n -mers), and termination (cyclization and entanglement of end groups in a non...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:High energy chemistry 2020-03, Vol.54 (2), p.77-86
Hauptverfasser: Kim, I. P., Kats, E. I., Benderskii, V. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 86
container_issue 2
container_start_page 77
container_title High energy chemistry
container_volume 54
creator Kim, I. P.
Kats, E. I.
Benderskii, V. A.
description Polycondensation of bifunctional organosilicon monomers as a chain unbranched process includes initiation (hydrolysis of nonreactive end groups), propagation (sequential addition of monomers and bimolecular aggregation of n -mers), and termination (cyclization and entanglement of end groups in a nonreactive environment). Kinetic models of these steps with a minimum number of rate constants have been proposed. It has been shown that the chain propagation pathways involving different end groups are mixed and the competition of the chain growth and termination processes determines the molecular mass distribution of oligomers and their fractal packing in nanoscale aggregates.
doi_str_mv 10.1134/S0018143920020101
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2383063593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2383063593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a7425f992c0182dfdba053b3d91a5f3a9ce11178c26749d226267cb05a44c6b53</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNuC560z-bPdeKvFqlipoJ6XbDZbUrZJTbaHfnuzVPAgnmaY936PxxByjTBBZPz2HQBL5ExSAAoIeEJGWECZM-TlKRkNcj7o5-Qixg0ACGAwIrM33x20d41xUfXWu-zFOtNbHe8ynGT3tt07PdxVl63CWjkfbWcTkL1657cmxEty1qoumqufOSafi4eP-VO-XD0-z2fLXDMs-lxNORWtlFSnJrRpm1qBYDVrJCrRMiW1QcRpqWkx5bKhtEiLrkEoznVRCzYmN8fcXfBfexP7auP3IfWKFWUlg4IJyZILjy4dfIzBtNUu2K0KhwqhGj5V_flUYuiRicnr1ib8Jv8PfQOfkWjZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383063593</pqid></control><display><type>article</type><title>Polycondensation Kinetics: 1. Bifunctional Organosilicon Monomers</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kim, I. P. ; Kats, E. I. ; Benderskii, V. A.</creator><creatorcontrib>Kim, I. P. ; Kats, E. I. ; Benderskii, V. A.</creatorcontrib><description>Polycondensation of bifunctional organosilicon monomers as a chain unbranched process includes initiation (hydrolysis of nonreactive end groups), propagation (sequential addition of monomers and bimolecular aggregation of n -mers), and termination (cyclization and entanglement of end groups in a nonreactive environment). Kinetic models of these steps with a minimum number of rate constants have been proposed. It has been shown that the chain propagation pathways involving different end groups are mixed and the competition of the chain growth and termination processes determines the molecular mass distribution of oligomers and their fractal packing in nanoscale aggregates.</description><identifier>ISSN: 0018-1439</identifier><identifier>EISSN: 1608-3148</identifier><identifier>DOI: 10.1134/S0018143920020101</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Chains ; Chemistry ; Chemistry and Materials Science ; Entanglement ; Environment models ; General Aspects ; Mass distribution ; Monomers ; Oligomers ; Physical Chemistry ; Propagation ; Rate constants</subject><ispartof>High energy chemistry, 2020-03, Vol.54 (2), p.77-86</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>2020© Pleiades Publishing, Ltd. 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a7425f992c0182dfdba053b3d91a5f3a9ce11178c26749d226267cb05a44c6b53</citedby><cites>FETCH-LOGICAL-c316t-a7425f992c0182dfdba053b3d91a5f3a9ce11178c26749d226267cb05a44c6b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0018143920020101$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0018143920020101$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kim, I. P.</creatorcontrib><creatorcontrib>Kats, E. I.</creatorcontrib><creatorcontrib>Benderskii, V. A.</creatorcontrib><title>Polycondensation Kinetics: 1. Bifunctional Organosilicon Monomers</title><title>High energy chemistry</title><addtitle>High Energy Chem</addtitle><description>Polycondensation of bifunctional organosilicon monomers as a chain unbranched process includes initiation (hydrolysis of nonreactive end groups), propagation (sequential addition of monomers and bimolecular aggregation of n -mers), and termination (cyclization and entanglement of end groups in a nonreactive environment). Kinetic models of these steps with a minimum number of rate constants have been proposed. It has been shown that the chain propagation pathways involving different end groups are mixed and the competition of the chain growth and termination processes determines the molecular mass distribution of oligomers and their fractal packing in nanoscale aggregates.</description><subject>Chains</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Entanglement</subject><subject>Environment models</subject><subject>General Aspects</subject><subject>Mass distribution</subject><subject>Monomers</subject><subject>Oligomers</subject><subject>Physical Chemistry</subject><subject>Propagation</subject><subject>Rate constants</subject><issn>0018-1439</issn><issn>1608-3148</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwNuC560z-bPdeKvFqlipoJ6XbDZbUrZJTbaHfnuzVPAgnmaY936PxxByjTBBZPz2HQBL5ExSAAoIeEJGWECZM-TlKRkNcj7o5-Qixg0ACGAwIrM33x20d41xUfXWu-zFOtNbHe8ynGT3tt07PdxVl63CWjkfbWcTkL1657cmxEty1qoumqufOSafi4eP-VO-XD0-z2fLXDMs-lxNORWtlFSnJrRpm1qBYDVrJCrRMiW1QcRpqWkx5bKhtEiLrkEoznVRCzYmN8fcXfBfexP7auP3IfWKFWUlg4IJyZILjy4dfIzBtNUu2K0KhwqhGj5V_flUYuiRicnr1ib8Jv8PfQOfkWjZ</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Kim, I. P.</creator><creator>Kats, E. I.</creator><creator>Benderskii, V. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200301</creationdate><title>Polycondensation Kinetics: 1. Bifunctional Organosilicon Monomers</title><author>Kim, I. P. ; Kats, E. I. ; Benderskii, V. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a7425f992c0182dfdba053b3d91a5f3a9ce11178c26749d226267cb05a44c6b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chains</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Entanglement</topic><topic>Environment models</topic><topic>General Aspects</topic><topic>Mass distribution</topic><topic>Monomers</topic><topic>Oligomers</topic><topic>Physical Chemistry</topic><topic>Propagation</topic><topic>Rate constants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, I. P.</creatorcontrib><creatorcontrib>Kats, E. I.</creatorcontrib><creatorcontrib>Benderskii, V. A.</creatorcontrib><collection>CrossRef</collection><jtitle>High energy chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, I. P.</au><au>Kats, E. I.</au><au>Benderskii, V. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polycondensation Kinetics: 1. Bifunctional Organosilicon Monomers</atitle><jtitle>High energy chemistry</jtitle><stitle>High Energy Chem</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>54</volume><issue>2</issue><spage>77</spage><epage>86</epage><pages>77-86</pages><issn>0018-1439</issn><eissn>1608-3148</eissn><abstract>Polycondensation of bifunctional organosilicon monomers as a chain unbranched process includes initiation (hydrolysis of nonreactive end groups), propagation (sequential addition of monomers and bimolecular aggregation of n -mers), and termination (cyclization and entanglement of end groups in a nonreactive environment). Kinetic models of these steps with a minimum number of rate constants have been proposed. It has been shown that the chain propagation pathways involving different end groups are mixed and the competition of the chain growth and termination processes determines the molecular mass distribution of oligomers and their fractal packing in nanoscale aggregates.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0018143920020101</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-1439
ispartof High energy chemistry, 2020-03, Vol.54 (2), p.77-86
issn 0018-1439
1608-3148
language eng
recordid cdi_proquest_journals_2383063593
source SpringerLink Journals - AutoHoldings
subjects Chains
Chemistry
Chemistry and Materials Science
Entanglement
Environment models
General Aspects
Mass distribution
Monomers
Oligomers
Physical Chemistry
Propagation
Rate constants
title Polycondensation Kinetics: 1. Bifunctional Organosilicon Monomers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A39%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polycondensation%20Kinetics:%201.%20Bifunctional%20Organosilicon%20Monomers&rft.jtitle=High%20energy%20chemistry&rft.au=Kim,%20I.%20P.&rft.date=2020-03-01&rft.volume=54&rft.issue=2&rft.spage=77&rft.epage=86&rft.pages=77-86&rft.issn=0018-1439&rft.eissn=1608-3148&rft_id=info:doi/10.1134/S0018143920020101&rft_dat=%3Cproquest_cross%3E2383063593%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2383063593&rft_id=info:pmid/&rfr_iscdi=true