Polycondensation Kinetics: 1. Bifunctional Organosilicon Monomers
Polycondensation of bifunctional organosilicon monomers as a chain unbranched process includes initiation (hydrolysis of nonreactive end groups), propagation (sequential addition of monomers and bimolecular aggregation of n -mers), and termination (cyclization and entanglement of end groups in a non...
Gespeichert in:
Veröffentlicht in: | High energy chemistry 2020-03, Vol.54 (2), p.77-86 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 86 |
---|---|
container_issue | 2 |
container_start_page | 77 |
container_title | High energy chemistry |
container_volume | 54 |
creator | Kim, I. P. Kats, E. I. Benderskii, V. A. |
description | Polycondensation of bifunctional organosilicon monomers as a chain unbranched process includes initiation (hydrolysis of nonreactive end groups), propagation (sequential addition of monomers and bimolecular aggregation of
n
-mers), and termination (cyclization and entanglement of end groups in a nonreactive environment). Kinetic models of these steps with a minimum number of rate constants have been proposed. It has been shown that the chain propagation pathways involving different end groups are mixed and the competition of the chain growth and termination processes determines the molecular mass distribution of oligomers and their fractal packing in nanoscale aggregates. |
doi_str_mv | 10.1134/S0018143920020101 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2383063593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2383063593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a7425f992c0182dfdba053b3d91a5f3a9ce11178c26749d226267cb05a44c6b53</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNuC560z-bPdeKvFqlipoJ6XbDZbUrZJTbaHfnuzVPAgnmaY936PxxByjTBBZPz2HQBL5ExSAAoIeEJGWECZM-TlKRkNcj7o5-Qixg0ACGAwIrM33x20d41xUfXWu-zFOtNbHe8ynGT3tt07PdxVl63CWjkfbWcTkL1657cmxEty1qoumqufOSafi4eP-VO-XD0-z2fLXDMs-lxNORWtlFSnJrRpm1qBYDVrJCrRMiW1QcRpqWkx5bKhtEiLrkEoznVRCzYmN8fcXfBfexP7auP3IfWKFWUlg4IJyZILjy4dfIzBtNUu2K0KhwqhGj5V_flUYuiRicnr1ib8Jv8PfQOfkWjZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383063593</pqid></control><display><type>article</type><title>Polycondensation Kinetics: 1. Bifunctional Organosilicon Monomers</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kim, I. P. ; Kats, E. I. ; Benderskii, V. A.</creator><creatorcontrib>Kim, I. P. ; Kats, E. I. ; Benderskii, V. A.</creatorcontrib><description>Polycondensation of bifunctional organosilicon monomers as a chain unbranched process includes initiation (hydrolysis of nonreactive end groups), propagation (sequential addition of monomers and bimolecular aggregation of
n
-mers), and termination (cyclization and entanglement of end groups in a nonreactive environment). Kinetic models of these steps with a minimum number of rate constants have been proposed. It has been shown that the chain propagation pathways involving different end groups are mixed and the competition of the chain growth and termination processes determines the molecular mass distribution of oligomers and their fractal packing in nanoscale aggregates.</description><identifier>ISSN: 0018-1439</identifier><identifier>EISSN: 1608-3148</identifier><identifier>DOI: 10.1134/S0018143920020101</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Chains ; Chemistry ; Chemistry and Materials Science ; Entanglement ; Environment models ; General Aspects ; Mass distribution ; Monomers ; Oligomers ; Physical Chemistry ; Propagation ; Rate constants</subject><ispartof>High energy chemistry, 2020-03, Vol.54 (2), p.77-86</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>2020© Pleiades Publishing, Ltd. 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a7425f992c0182dfdba053b3d91a5f3a9ce11178c26749d226267cb05a44c6b53</citedby><cites>FETCH-LOGICAL-c316t-a7425f992c0182dfdba053b3d91a5f3a9ce11178c26749d226267cb05a44c6b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0018143920020101$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0018143920020101$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kim, I. P.</creatorcontrib><creatorcontrib>Kats, E. I.</creatorcontrib><creatorcontrib>Benderskii, V. A.</creatorcontrib><title>Polycondensation Kinetics: 1. Bifunctional Organosilicon Monomers</title><title>High energy chemistry</title><addtitle>High Energy Chem</addtitle><description>Polycondensation of bifunctional organosilicon monomers as a chain unbranched process includes initiation (hydrolysis of nonreactive end groups), propagation (sequential addition of monomers and bimolecular aggregation of
n
-mers), and termination (cyclization and entanglement of end groups in a nonreactive environment). Kinetic models of these steps with a minimum number of rate constants have been proposed. It has been shown that the chain propagation pathways involving different end groups are mixed and the competition of the chain growth and termination processes determines the molecular mass distribution of oligomers and their fractal packing in nanoscale aggregates.</description><subject>Chains</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Entanglement</subject><subject>Environment models</subject><subject>General Aspects</subject><subject>Mass distribution</subject><subject>Monomers</subject><subject>Oligomers</subject><subject>Physical Chemistry</subject><subject>Propagation</subject><subject>Rate constants</subject><issn>0018-1439</issn><issn>1608-3148</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwNuC560z-bPdeKvFqlipoJ6XbDZbUrZJTbaHfnuzVPAgnmaY936PxxByjTBBZPz2HQBL5ExSAAoIeEJGWECZM-TlKRkNcj7o5-Qixg0ACGAwIrM33x20d41xUfXWu-zFOtNbHe8ynGT3tt07PdxVl63CWjkfbWcTkL1657cmxEty1qoumqufOSafi4eP-VO-XD0-z2fLXDMs-lxNORWtlFSnJrRpm1qBYDVrJCrRMiW1QcRpqWkx5bKhtEiLrkEoznVRCzYmN8fcXfBfexP7auP3IfWKFWUlg4IJyZILjy4dfIzBtNUu2K0KhwqhGj5V_flUYuiRicnr1ib8Jv8PfQOfkWjZ</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Kim, I. P.</creator><creator>Kats, E. I.</creator><creator>Benderskii, V. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200301</creationdate><title>Polycondensation Kinetics: 1. Bifunctional Organosilicon Monomers</title><author>Kim, I. P. ; Kats, E. I. ; Benderskii, V. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a7425f992c0182dfdba053b3d91a5f3a9ce11178c26749d226267cb05a44c6b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chains</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Entanglement</topic><topic>Environment models</topic><topic>General Aspects</topic><topic>Mass distribution</topic><topic>Monomers</topic><topic>Oligomers</topic><topic>Physical Chemistry</topic><topic>Propagation</topic><topic>Rate constants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, I. P.</creatorcontrib><creatorcontrib>Kats, E. I.</creatorcontrib><creatorcontrib>Benderskii, V. A.</creatorcontrib><collection>CrossRef</collection><jtitle>High energy chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, I. P.</au><au>Kats, E. I.</au><au>Benderskii, V. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polycondensation Kinetics: 1. Bifunctional Organosilicon Monomers</atitle><jtitle>High energy chemistry</jtitle><stitle>High Energy Chem</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>54</volume><issue>2</issue><spage>77</spage><epage>86</epage><pages>77-86</pages><issn>0018-1439</issn><eissn>1608-3148</eissn><abstract>Polycondensation of bifunctional organosilicon monomers as a chain unbranched process includes initiation (hydrolysis of nonreactive end groups), propagation (sequential addition of monomers and bimolecular aggregation of
n
-mers), and termination (cyclization and entanglement of end groups in a nonreactive environment). Kinetic models of these steps with a minimum number of rate constants have been proposed. It has been shown that the chain propagation pathways involving different end groups are mixed and the competition of the chain growth and termination processes determines the molecular mass distribution of oligomers and their fractal packing in nanoscale aggregates.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0018143920020101</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-1439 |
ispartof | High energy chemistry, 2020-03, Vol.54 (2), p.77-86 |
issn | 0018-1439 1608-3148 |
language | eng |
recordid | cdi_proquest_journals_2383063593 |
source | SpringerLink Journals - AutoHoldings |
subjects | Chains Chemistry Chemistry and Materials Science Entanglement Environment models General Aspects Mass distribution Monomers Oligomers Physical Chemistry Propagation Rate constants |
title | Polycondensation Kinetics: 1. Bifunctional Organosilicon Monomers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A39%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polycondensation%20Kinetics:%201.%20Bifunctional%20Organosilicon%20Monomers&rft.jtitle=High%20energy%20chemistry&rft.au=Kim,%20I.%20P.&rft.date=2020-03-01&rft.volume=54&rft.issue=2&rft.spage=77&rft.epage=86&rft.pages=77-86&rft.issn=0018-1439&rft.eissn=1608-3148&rft_id=info:doi/10.1134/S0018143920020101&rft_dat=%3Cproquest_cross%3E2383063593%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2383063593&rft_id=info:pmid/&rfr_iscdi=true |