Deep Neural Network Application in the Phase-Match Calibration of Gas–Microphone Photoacoustics

In this paper, a methodology for the application of neural networks in phase-match calibration of gas–microphone photoacoustics in frequency domain is developed. A two-layer deep neural network is used to determine, in real-time, reliably and accurately, the phase transfer function of the used micro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of thermophysics 2020, Vol.41 (6), Article 73
Hauptverfasser: Jordovic-Pavlovic, Miroslava I., Markushev, Dragan D., Kupusinac, Aleksandar D., Djordjevic, Katarina Lj, Nesic, Mioljub V., Galovic, Slobodanka P., Popovic, Marica N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title International journal of thermophysics
container_volume 41
creator Jordovic-Pavlovic, Miroslava I.
Markushev, Dragan D.
Kupusinac, Aleksandar D.
Djordjevic, Katarina Lj
Nesic, Mioljub V.
Galovic, Slobodanka P.
Popovic, Marica N.
description In this paper, a methodology for the application of neural networks in phase-match calibration of gas–microphone photoacoustics in frequency domain is developed. A two-layer deep neural network is used to determine, in real-time, reliably and accurately, the phase transfer function of the used microphone, applying the photoacoustic response of aluminum as reference material. This transfer function was used to correct the photoacoustic response of laser-sintered polyamide and to compare it with theoretical predictions. The obtained degree of correlation of the corrected and theoretical signal tells us that our method of phase-match calibration in photoacoustics can be generalized to a photoacoustic response coming from a solid sample made of different materials.
doi_str_mv 10.1007/s10765-020-02650-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2382725225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2382725225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-59f04024d00b3023b6d801d8e1e5b16b8c4cb4f822232ec2e29a195d360680f73</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EEqXwAkyRmAPnc-wkY1WgILXAABKb5TgOSSlxsBMhNt6BN-RJcAkSG8PpH-67_-5-Qo4pnFKA9MxTSAWPASGU4BCnO2RCeYpxzkW6SyZAcx7nmD3ukwPv1wCQpzmbEHVuTBfdmMGpTZD-zbrnaNZ1m0arvrFt1LRRX5vorlbexCvV6zqaq01TuLFtq2ih_NfH56rRzna1bbes7a3SdvB9o_0h2avUxpujX52Sh8uL-_lVvLxdXM9ny1gzLvqY5xUkgEkJUDBAVogyA1pmhhpeUFFkOtFFUmWIyNBoNJir8FPJBIgMqpRNycno2zn7Ohjfy7UdXBtWSmQZpsgReaBwpMK13jtTyc41L8q9SwpyG6Uco5QhSvkTpdxas3HIB7h9Mu7P-p-pb3jcdzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2382725225</pqid></control><display><type>article</type><title>Deep Neural Network Application in the Phase-Match Calibration of Gas–Microphone Photoacoustics</title><source>Springer Nature - Complete Springer Journals</source><creator>Jordovic-Pavlovic, Miroslava I. ; Markushev, Dragan D. ; Kupusinac, Aleksandar D. ; Djordjevic, Katarina Lj ; Nesic, Mioljub V. ; Galovic, Slobodanka P. ; Popovic, Marica N.</creator><creatorcontrib>Jordovic-Pavlovic, Miroslava I. ; Markushev, Dragan D. ; Kupusinac, Aleksandar D. ; Djordjevic, Katarina Lj ; Nesic, Mioljub V. ; Galovic, Slobodanka P. ; Popovic, Marica N.</creatorcontrib><description>In this paper, a methodology for the application of neural networks in phase-match calibration of gas–microphone photoacoustics in frequency domain is developed. A two-layer deep neural network is used to determine, in real-time, reliably and accurately, the phase transfer function of the used microphone, applying the photoacoustic response of aluminum as reference material. This transfer function was used to correct the photoacoustic response of laser-sintered polyamide and to compare it with theoretical predictions. The obtained degree of correlation of the corrected and theoretical signal tells us that our method of phase-match calibration in photoacoustics can be generalized to a photoacoustic response coming from a solid sample made of different materials.</description><identifier>ISSN: 0195-928X</identifier><identifier>EISSN: 1572-9567</identifier><identifier>DOI: 10.1007/s10765-020-02650-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum ; Artificial neural networks ; Calibration ; Classical Mechanics ; Condensed Matter Physics ; Geophysics ; Icppp 20 ; ICPPP-20: Selected Papers of the 20th International Conference on Photoacoustic and Photothermal Phenomena ; Industrial Chemistry/Chemical Engineering ; Laser sintering ; Neural networks ; Physical Chemistry ; Physics ; Physics and Astronomy ; Polyamide resins ; Thermodynamics ; Transfer functions</subject><ispartof>International journal of thermophysics, 2020, Vol.41 (6), Article 73</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-59f04024d00b3023b6d801d8e1e5b16b8c4cb4f822232ec2e29a195d360680f73</citedby><cites>FETCH-LOGICAL-c356t-59f04024d00b3023b6d801d8e1e5b16b8c4cb4f822232ec2e29a195d360680f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10765-020-02650-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10765-020-02650-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Jordovic-Pavlovic, Miroslava I.</creatorcontrib><creatorcontrib>Markushev, Dragan D.</creatorcontrib><creatorcontrib>Kupusinac, Aleksandar D.</creatorcontrib><creatorcontrib>Djordjevic, Katarina Lj</creatorcontrib><creatorcontrib>Nesic, Mioljub V.</creatorcontrib><creatorcontrib>Galovic, Slobodanka P.</creatorcontrib><creatorcontrib>Popovic, Marica N.</creatorcontrib><title>Deep Neural Network Application in the Phase-Match Calibration of Gas–Microphone Photoacoustics</title><title>International journal of thermophysics</title><addtitle>Int J Thermophys</addtitle><description>In this paper, a methodology for the application of neural networks in phase-match calibration of gas–microphone photoacoustics in frequency domain is developed. A two-layer deep neural network is used to determine, in real-time, reliably and accurately, the phase transfer function of the used microphone, applying the photoacoustic response of aluminum as reference material. This transfer function was used to correct the photoacoustic response of laser-sintered polyamide and to compare it with theoretical predictions. The obtained degree of correlation of the corrected and theoretical signal tells us that our method of phase-match calibration in photoacoustics can be generalized to a photoacoustic response coming from a solid sample made of different materials.</description><subject>Aluminum</subject><subject>Artificial neural networks</subject><subject>Calibration</subject><subject>Classical Mechanics</subject><subject>Condensed Matter Physics</subject><subject>Geophysics</subject><subject>Icppp 20</subject><subject>ICPPP-20: Selected Papers of the 20th International Conference on Photoacoustic and Photothermal Phenomena</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Laser sintering</subject><subject>Neural networks</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polyamide resins</subject><subject>Thermodynamics</subject><subject>Transfer functions</subject><issn>0195-928X</issn><issn>1572-9567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhi0EEqXwAkyRmAPnc-wkY1WgILXAABKb5TgOSSlxsBMhNt6BN-RJcAkSG8PpH-67_-5-Qo4pnFKA9MxTSAWPASGU4BCnO2RCeYpxzkW6SyZAcx7nmD3ukwPv1wCQpzmbEHVuTBfdmMGpTZD-zbrnaNZ1m0arvrFt1LRRX5vorlbexCvV6zqaq01TuLFtq2ih_NfH56rRzna1bbes7a3SdvB9o_0h2avUxpujX52Sh8uL-_lVvLxdXM9ny1gzLvqY5xUkgEkJUDBAVogyA1pmhhpeUFFkOtFFUmWIyNBoNJir8FPJBIgMqpRNycno2zn7Ohjfy7UdXBtWSmQZpsgReaBwpMK13jtTyc41L8q9SwpyG6Uco5QhSvkTpdxas3HIB7h9Mu7P-p-pb3jcdzQ</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Jordovic-Pavlovic, Miroslava I.</creator><creator>Markushev, Dragan D.</creator><creator>Kupusinac, Aleksandar D.</creator><creator>Djordjevic, Katarina Lj</creator><creator>Nesic, Mioljub V.</creator><creator>Galovic, Slobodanka P.</creator><creator>Popovic, Marica N.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2020</creationdate><title>Deep Neural Network Application in the Phase-Match Calibration of Gas–Microphone Photoacoustics</title><author>Jordovic-Pavlovic, Miroslava I. ; Markushev, Dragan D. ; Kupusinac, Aleksandar D. ; Djordjevic, Katarina Lj ; Nesic, Mioljub V. ; Galovic, Slobodanka P. ; Popovic, Marica N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-59f04024d00b3023b6d801d8e1e5b16b8c4cb4f822232ec2e29a195d360680f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum</topic><topic>Artificial neural networks</topic><topic>Calibration</topic><topic>Classical Mechanics</topic><topic>Condensed Matter Physics</topic><topic>Geophysics</topic><topic>Icppp 20</topic><topic>ICPPP-20: Selected Papers of the 20th International Conference on Photoacoustic and Photothermal Phenomena</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Laser sintering</topic><topic>Neural networks</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polyamide resins</topic><topic>Thermodynamics</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jordovic-Pavlovic, Miroslava I.</creatorcontrib><creatorcontrib>Markushev, Dragan D.</creatorcontrib><creatorcontrib>Kupusinac, Aleksandar D.</creatorcontrib><creatorcontrib>Djordjevic, Katarina Lj</creatorcontrib><creatorcontrib>Nesic, Mioljub V.</creatorcontrib><creatorcontrib>Galovic, Slobodanka P.</creatorcontrib><creatorcontrib>Popovic, Marica N.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of thermophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jordovic-Pavlovic, Miroslava I.</au><au>Markushev, Dragan D.</au><au>Kupusinac, Aleksandar D.</au><au>Djordjevic, Katarina Lj</au><au>Nesic, Mioljub V.</au><au>Galovic, Slobodanka P.</au><au>Popovic, Marica N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Neural Network Application in the Phase-Match Calibration of Gas–Microphone Photoacoustics</atitle><jtitle>International journal of thermophysics</jtitle><stitle>Int J Thermophys</stitle><date>2020</date><risdate>2020</risdate><volume>41</volume><issue>6</issue><artnum>73</artnum><issn>0195-928X</issn><eissn>1572-9567</eissn><abstract>In this paper, a methodology for the application of neural networks in phase-match calibration of gas–microphone photoacoustics in frequency domain is developed. A two-layer deep neural network is used to determine, in real-time, reliably and accurately, the phase transfer function of the used microphone, applying the photoacoustic response of aluminum as reference material. This transfer function was used to correct the photoacoustic response of laser-sintered polyamide and to compare it with theoretical predictions. The obtained degree of correlation of the corrected and theoretical signal tells us that our method of phase-match calibration in photoacoustics can be generalized to a photoacoustic response coming from a solid sample made of different materials.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10765-020-02650-7</doi></addata></record>
fulltext fulltext
identifier ISSN: 0195-928X
ispartof International journal of thermophysics, 2020, Vol.41 (6), Article 73
issn 0195-928X
1572-9567
language eng
recordid cdi_proquest_journals_2382725225
source Springer Nature - Complete Springer Journals
subjects Aluminum
Artificial neural networks
Calibration
Classical Mechanics
Condensed Matter Physics
Geophysics
Icppp 20
ICPPP-20: Selected Papers of the 20th International Conference on Photoacoustic and Photothermal Phenomena
Industrial Chemistry/Chemical Engineering
Laser sintering
Neural networks
Physical Chemistry
Physics
Physics and Astronomy
Polyamide resins
Thermodynamics
Transfer functions
title Deep Neural Network Application in the Phase-Match Calibration of Gas–Microphone Photoacoustics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A42%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Neural%20Network%20Application%20in%20the%20Phase-Match%20Calibration%20of%20Gas%E2%80%93Microphone%20Photoacoustics&rft.jtitle=International%20journal%20of%20thermophysics&rft.au=Jordovic-Pavlovic,%20Miroslava%20I.&rft.date=2020&rft.volume=41&rft.issue=6&rft.artnum=73&rft.issn=0195-928X&rft.eissn=1572-9567&rft_id=info:doi/10.1007/s10765-020-02650-7&rft_dat=%3Cproquest_cross%3E2382725225%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2382725225&rft_id=info:pmid/&rfr_iscdi=true