Electrochemical behavior of polyaniline: A study by electrochemical impedance spectroscopy (EIS) in low-frequency

Conducting polymers are increasingly attracting the interest of many researchers in different areas due to their good conductivity, stability and easy preparation. Polyaniline is heavily studied in sensors, corrosion protection, electrochromic devices, and supercapacitors, however, even with numerou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solid state ionics 2020-03, Vol.346, p.115198, Article 115198
Hauptverfasser: Martins, João C., de M. Neto, José C., Passos, Raimundo R., Pocrifka, Leandro A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 115198
container_title Solid state ionics
container_volume 346
creator Martins, João C.
de M. Neto, José C.
Passos, Raimundo R.
Pocrifka, Leandro A.
description Conducting polymers are increasingly attracting the interest of many researchers in different areas due to their good conductivity, stability and easy preparation. Polyaniline is heavily studied in sensors, corrosion protection, electrochromic devices, and supercapacitors, however, even with numerous applications, there are still few pieces of literature that report their electrochemical behavior in regions low-frequency of by electrochemical impedance spectroscopy (EIS). In this work, polyaniline was electropolymerized by galvanic synthesis (chronoamperometry) in stainless steel substrate. Its performance was evaluated by cyclic voltammetry (CV) galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). It was observed in its low-frequency pseudocapacitive analysis, in the benzoquinone and hydroquinone intermediate regions, capacitance values above 100 mF·cm−2, and in the emeraldine state, 295 F·g−1 was obtained. Such results provide a better and detailed understanding of PANI oxidation and reduction processes and could optimize the use of the polymer in various fields of applications. •In characterization of charge-discharge, the PANIT1 the specific capacitance 295 F·g−1•Indicating that the capacitive process is controlled the Warburg diffusion•In the potential of 0.3 V that corresponds to the state of oxidation of the emeraldine base
doi_str_mv 10.1016/j.ssi.2019.115198
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2382687672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167273819304977</els_id><sourcerecordid>2382687672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-c5df46ae46be97f719aaa05112191b81abf41fe8d8654f2234dc772ed4bdba883</originalsourceid><addsrcrecordid>eNp9kDtPxDAQhC0EEsfjB9BZooEiR9ZJbAcqhI6HhEQB1JZjr4VPuTjYd6D8ewxHRUG1xc7s7HyEnEA5hxL4xXKekp-zEto5QAOt3CEzkIIVgst2l8yyRhRMVHKfHKS0LMuSV5LPyPuiR7OOwbzhyhvd0w7f9IcPkQZHx9BPevC9H_CSXtO03tiJdhPFPx6_GtHqwSBN488mmTBO9Gzx8HxO_UD78Fm4iO8bHMx0RPac7hMe_85D8nq7eLm5Lx6f7h5urh8LU7FmXZjGupprrHmHrXACWq112QAwaKGToDtXg0NpJW9qx1hVWyMEQ1t3ttNSVofkdHt3jCEnp7Vahk0ccqRilWRcCi5YVsFWZfLXKaJTY_QrHScFpfomq5Yqk1XfZNWWbPZcbT2Y3__wGFUyPldD62Our2zw_7i_AK2tguY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2382687672</pqid></control><display><type>article</type><title>Electrochemical behavior of polyaniline: A study by electrochemical impedance spectroscopy (EIS) in low-frequency</title><source>Elsevier ScienceDirect Journals</source><creator>Martins, João C. ; de M. Neto, José C. ; Passos, Raimundo R. ; Pocrifka, Leandro A.</creator><creatorcontrib>Martins, João C. ; de M. Neto, José C. ; Passos, Raimundo R. ; Pocrifka, Leandro A.</creatorcontrib><description>Conducting polymers are increasingly attracting the interest of many researchers in different areas due to their good conductivity, stability and easy preparation. Polyaniline is heavily studied in sensors, corrosion protection, electrochromic devices, and supercapacitors, however, even with numerous applications, there are still few pieces of literature that report their electrochemical behavior in regions low-frequency of by electrochemical impedance spectroscopy (EIS). In this work, polyaniline was electropolymerized by galvanic synthesis (chronoamperometry) in stainless steel substrate. Its performance was evaluated by cyclic voltammetry (CV) galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). It was observed in its low-frequency pseudocapacitive analysis, in the benzoquinone and hydroquinone intermediate regions, capacitance values above 100 mF·cm−2, and in the emeraldine state, 295 F·g−1 was obtained. Such results provide a better and detailed understanding of PANI oxidation and reduction processes and could optimize the use of the polymer in various fields of applications. •In characterization of charge-discharge, the PANIT1 the specific capacitance 295 F·g−1•Indicating that the capacitive process is controlled the Warburg diffusion•In the potential of 0.3 V that corresponds to the state of oxidation of the emeraldine base</description><identifier>ISSN: 0167-2738</identifier><identifier>EISSN: 1872-7689</identifier><identifier>DOI: 10.1016/j.ssi.2019.115198</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Benzoquinone ; Conducting polymers ; Conductive polymer ; Conductivity ; Corrosion prevention ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Electrochemical impedance spectroscopy (EIS) ; Electrochromic cells ; Electrochromism ; Frequency analysis ; Hydroquinone ; Low-frequency ; Oxidation ; PANI ; Polyanilines ; Polymers ; Stainless steels ; Substrates ; Voltammetry</subject><ispartof>Solid state ionics, 2020-03, Vol.346, p.115198, Article 115198</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-c5df46ae46be97f719aaa05112191b81abf41fe8d8654f2234dc772ed4bdba883</citedby><cites>FETCH-LOGICAL-c325t-c5df46ae46be97f719aaa05112191b81abf41fe8d8654f2234dc772ed4bdba883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167273819304977$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Martins, João C.</creatorcontrib><creatorcontrib>de M. Neto, José C.</creatorcontrib><creatorcontrib>Passos, Raimundo R.</creatorcontrib><creatorcontrib>Pocrifka, Leandro A.</creatorcontrib><title>Electrochemical behavior of polyaniline: A study by electrochemical impedance spectroscopy (EIS) in low-frequency</title><title>Solid state ionics</title><description>Conducting polymers are increasingly attracting the interest of many researchers in different areas due to their good conductivity, stability and easy preparation. Polyaniline is heavily studied in sensors, corrosion protection, electrochromic devices, and supercapacitors, however, even with numerous applications, there are still few pieces of literature that report their electrochemical behavior in regions low-frequency of by electrochemical impedance spectroscopy (EIS). In this work, polyaniline was electropolymerized by galvanic synthesis (chronoamperometry) in stainless steel substrate. Its performance was evaluated by cyclic voltammetry (CV) galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). It was observed in its low-frequency pseudocapacitive analysis, in the benzoquinone and hydroquinone intermediate regions, capacitance values above 100 mF·cm−2, and in the emeraldine state, 295 F·g−1 was obtained. Such results provide a better and detailed understanding of PANI oxidation and reduction processes and could optimize the use of the polymer in various fields of applications. •In characterization of charge-discharge, the PANIT1 the specific capacitance 295 F·g−1•Indicating that the capacitive process is controlled the Warburg diffusion•In the potential of 0.3 V that corresponds to the state of oxidation of the emeraldine base</description><subject>Benzoquinone</subject><subject>Conducting polymers</subject><subject>Conductive polymer</subject><subject>Conductivity</subject><subject>Corrosion prevention</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemical impedance spectroscopy (EIS)</subject><subject>Electrochromic cells</subject><subject>Electrochromism</subject><subject>Frequency analysis</subject><subject>Hydroquinone</subject><subject>Low-frequency</subject><subject>Oxidation</subject><subject>PANI</subject><subject>Polyanilines</subject><subject>Polymers</subject><subject>Stainless steels</subject><subject>Substrates</subject><subject>Voltammetry</subject><issn>0167-2738</issn><issn>1872-7689</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPxDAQhC0EEsfjB9BZooEiR9ZJbAcqhI6HhEQB1JZjr4VPuTjYd6D8ewxHRUG1xc7s7HyEnEA5hxL4xXKekp-zEto5QAOt3CEzkIIVgst2l8yyRhRMVHKfHKS0LMuSV5LPyPuiR7OOwbzhyhvd0w7f9IcPkQZHx9BPevC9H_CSXtO03tiJdhPFPx6_GtHqwSBN488mmTBO9Gzx8HxO_UD78Fm4iO8bHMx0RPac7hMe_85D8nq7eLm5Lx6f7h5urh8LU7FmXZjGupprrHmHrXACWq112QAwaKGToDtXg0NpJW9qx1hVWyMEQ1t3ttNSVofkdHt3jCEnp7Vahk0ccqRilWRcCi5YVsFWZfLXKaJTY_QrHScFpfomq5Yqk1XfZNWWbPZcbT2Y3__wGFUyPldD62Our2zw_7i_AK2tguY</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Martins, João C.</creator><creator>de M. Neto, José C.</creator><creator>Passos, Raimundo R.</creator><creator>Pocrifka, Leandro A.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>202003</creationdate><title>Electrochemical behavior of polyaniline: A study by electrochemical impedance spectroscopy (EIS) in low-frequency</title><author>Martins, João C. ; de M. Neto, José C. ; Passos, Raimundo R. ; Pocrifka, Leandro A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-c5df46ae46be97f719aaa05112191b81abf41fe8d8654f2234dc772ed4bdba883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Benzoquinone</topic><topic>Conducting polymers</topic><topic>Conductive polymer</topic><topic>Conductivity</topic><topic>Corrosion prevention</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemical impedance spectroscopy (EIS)</topic><topic>Electrochromic cells</topic><topic>Electrochromism</topic><topic>Frequency analysis</topic><topic>Hydroquinone</topic><topic>Low-frequency</topic><topic>Oxidation</topic><topic>PANI</topic><topic>Polyanilines</topic><topic>Polymers</topic><topic>Stainless steels</topic><topic>Substrates</topic><topic>Voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martins, João C.</creatorcontrib><creatorcontrib>de M. Neto, José C.</creatorcontrib><creatorcontrib>Passos, Raimundo R.</creatorcontrib><creatorcontrib>Pocrifka, Leandro A.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Solid state ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martins, João C.</au><au>de M. Neto, José C.</au><au>Passos, Raimundo R.</au><au>Pocrifka, Leandro A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical behavior of polyaniline: A study by electrochemical impedance spectroscopy (EIS) in low-frequency</atitle><jtitle>Solid state ionics</jtitle><date>2020-03</date><risdate>2020</risdate><volume>346</volume><spage>115198</spage><pages>115198-</pages><artnum>115198</artnum><issn>0167-2738</issn><eissn>1872-7689</eissn><abstract>Conducting polymers are increasingly attracting the interest of many researchers in different areas due to their good conductivity, stability and easy preparation. Polyaniline is heavily studied in sensors, corrosion protection, electrochromic devices, and supercapacitors, however, even with numerous applications, there are still few pieces of literature that report their electrochemical behavior in regions low-frequency of by electrochemical impedance spectroscopy (EIS). In this work, polyaniline was electropolymerized by galvanic synthesis (chronoamperometry) in stainless steel substrate. Its performance was evaluated by cyclic voltammetry (CV) galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). It was observed in its low-frequency pseudocapacitive analysis, in the benzoquinone and hydroquinone intermediate regions, capacitance values above 100 mF·cm−2, and in the emeraldine state, 295 F·g−1 was obtained. Such results provide a better and detailed understanding of PANI oxidation and reduction processes and could optimize the use of the polymer in various fields of applications. •In characterization of charge-discharge, the PANIT1 the specific capacitance 295 F·g−1•Indicating that the capacitive process is controlled the Warburg diffusion•In the potential of 0.3 V that corresponds to the state of oxidation of the emeraldine base</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ssi.2019.115198</doi></addata></record>
fulltext fulltext
identifier ISSN: 0167-2738
ispartof Solid state ionics, 2020-03, Vol.346, p.115198, Article 115198
issn 0167-2738
1872-7689
language eng
recordid cdi_proquest_journals_2382687672
source Elsevier ScienceDirect Journals
subjects Benzoquinone
Conducting polymers
Conductive polymer
Conductivity
Corrosion prevention
Electrochemical analysis
Electrochemical impedance spectroscopy
Electrochemical impedance spectroscopy (EIS)
Electrochromic cells
Electrochromism
Frequency analysis
Hydroquinone
Low-frequency
Oxidation
PANI
Polyanilines
Polymers
Stainless steels
Substrates
Voltammetry
title Electrochemical behavior of polyaniline: A study by electrochemical impedance spectroscopy (EIS) in low-frequency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T12%3A25%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20behavior%20of%20polyaniline:%20A%20study%20by%20electrochemical%20impedance%20spectroscopy%20(EIS)%20in%20low-frequency&rft.jtitle=Solid%20state%20ionics&rft.au=Martins,%20Jo%C3%A3o%20C.&rft.date=2020-03&rft.volume=346&rft.spage=115198&rft.pages=115198-&rft.artnum=115198&rft.issn=0167-2738&rft.eissn=1872-7689&rft_id=info:doi/10.1016/j.ssi.2019.115198&rft_dat=%3Cproquest_cross%3E2382687672%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2382687672&rft_id=info:pmid/&rft_els_id=S0167273819304977&rfr_iscdi=true