Automated Mixed Matrix Membrane Microextraction Prior to Liquid Chromatography for the Determination of Chlorophenoxy Acid Herbicides in Sewage Water Samples
A new automated flow-through adsorption/desorption procedure using a multiwalled carbon nanotube immobilised mixed matrix membrane is described. The membrane consisted of 25% (w/w) multiwall carbon nanotube loading in a cellulose triacetate polymer matrix as support and was cast and embedded in a fl...
Gespeichert in:
Veröffentlicht in: | Chromatographia 2020-04, Vol.83 (4), p.497-505 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 505 |
---|---|
container_issue | 4 |
container_start_page | 497 |
container_title | Chromatographia |
container_volume | 83 |
creator | Ganesan, Thipashini Lim, Hong Ngee See, Hong Heng |
description | A new automated flow-through adsorption/desorption procedure using a multiwalled carbon nanotube immobilised mixed matrix membrane is described. The membrane consisted of 25% (w/w) multiwall carbon nanotube loading in a cellulose triacetate polymer matrix as support and was cast and embedded in a flow-through cell with a channel of an approximate length of 20 mm, a width of 2 mm, and a depth of 1.5 mm. The membrane immobilised with nanoparticles was activated using 1-octanol as a conditioning solvent. For the analyte adsorption process, 6 mL of the sample was passed through the cell at a flow rate of 0.2 mL min
−1
. The entrapped target analytes were then desorbed dynamically with 60 µL of 2-propanal at a flow rate of 5 µL min
−1
prior to HPLC/UV analysis. The performance of the system was demonstrated for the determination of chlorinated phenoxyacetic acid herbicides in sewage water samples. Under the optimum conditions, the linearity of this method ranged from 50 to 1000 ng mL
−1
, with a correlation coefficient (
r
) ≥ 0.993 and a detection limit varying from 15 to 20 ng mL
−1
. Enrichment factors of up to 55 were achieved with relative recoveries of 95–99% and precision values of 6.1–7.5%. |
doi_str_mv | 10.1007/s10337-020-03865-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2382064187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2382064187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2705d63cb8805720448b31c3ee7da58e46e8143b6a5c262679125926db6e9693</originalsourceid><addsrcrecordid>eNqNkc1u3CAUhVHVSJ0mfYGukLqs3PJjY1iO3KapNFEjJVKWCOPrGaKxcQArMw_Tdy0zrtpd1Q1c4HxwuAeh95R8ooTUnyMlnNcFYaQgXIqqKF-hFRWUFZRS9hqtCCGqqKTib9DbGJ_ykikhVujnek5-MAk6fOsOp9Gk4A74FoY2mBHyrg0eDikYm5wf8V1wPuDk8cY9z67DzS6ceL8NZtodcX863AH-AgnC4EZzhnyfdXsf_LSD0R-OeG0zegOhdbmAiN2I7-HFbAE_Zi8B35th2kO8Qhe92Ud493u-RA_XXx-am2Lz49v3Zr0pLKcqFawmVSe4baUkVc1IWcqWU8sB6s5UEkoBkpa8FaayTDBRK8oqxUTXClBC8Uv0Ybl2Cv55hpj0k5_DmF_UjEtGREllnVVsUeWGxBig11NwgwlHTYk-paCXFHROQZ9T0GWG5AK9QOv7aB2MFv6AOYaKZieVyhWhjUvnfjV-HlNGP_4_mtV8UcesGLcQ_v7hH_Z-AaqSrNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2382064187</pqid></control><display><type>article</type><title>Automated Mixed Matrix Membrane Microextraction Prior to Liquid Chromatography for the Determination of Chlorophenoxy Acid Herbicides in Sewage Water Samples</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ganesan, Thipashini ; Lim, Hong Ngee ; See, Hong Heng</creator><creatorcontrib>Ganesan, Thipashini ; Lim, Hong Ngee ; See, Hong Heng</creatorcontrib><description>A new automated flow-through adsorption/desorption procedure using a multiwalled carbon nanotube immobilised mixed matrix membrane is described. The membrane consisted of 25% (w/w) multiwall carbon nanotube loading in a cellulose triacetate polymer matrix as support and was cast and embedded in a flow-through cell with a channel of an approximate length of 20 mm, a width of 2 mm, and a depth of 1.5 mm. The membrane immobilised with nanoparticles was activated using 1-octanol as a conditioning solvent. For the analyte adsorption process, 6 mL of the sample was passed through the cell at a flow rate of 0.2 mL min
−1
. The entrapped target analytes were then desorbed dynamically with 60 µL of 2-propanal at a flow rate of 5 µL min
−1
prior to HPLC/UV analysis. The performance of the system was demonstrated for the determination of chlorinated phenoxyacetic acid herbicides in sewage water samples. Under the optimum conditions, the linearity of this method ranged from 50 to 1000 ng mL
−1
, with a correlation coefficient (
r
) ≥ 0.993 and a detection limit varying from 15 to 20 ng mL
−1
. Enrichment factors of up to 55 were achieved with relative recoveries of 95–99% and precision values of 6.1–7.5%.</description><identifier>ISSN: 0009-5893</identifier><identifier>EISSN: 1612-1112</identifier><identifier>DOI: 10.1007/s10337-020-03865-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adsorption ; Analytical Chemistry ; Automation ; Biochemical Research Methods ; Biochemistry & Molecular Biology ; Carbon fiber reinforced plastics ; Cellulose triacetate ; Chemistry ; Chemistry and Materials Science ; Chemistry, Analytical ; Chromatography ; Correlation coefficients ; Flow velocity ; Herbicides ; High performance liquid chromatography ; Laboratory Medicine ; Life Sciences & Biomedicine ; Linearity ; Membranes ; Multi wall carbon nanotubes ; Nanoparticles ; Octanol ; Original ; Pharmacy ; Physical Sciences ; Proteomics ; Science & Technology ; Sewage</subject><ispartof>Chromatographia, 2020-04, Vol.83 (4), p.497-505</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>2020© Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>4</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000515925900001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c319t-2705d63cb8805720448b31c3ee7da58e46e8143b6a5c262679125926db6e9693</citedby><cites>FETCH-LOGICAL-c319t-2705d63cb8805720448b31c3ee7da58e46e8143b6a5c262679125926db6e9693</cites><orcidid>0000-0002-7849-6929 ; 0000-0003-2436-8953</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10337-020-03865-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10337-020-03865-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Ganesan, Thipashini</creatorcontrib><creatorcontrib>Lim, Hong Ngee</creatorcontrib><creatorcontrib>See, Hong Heng</creatorcontrib><title>Automated Mixed Matrix Membrane Microextraction Prior to Liquid Chromatography for the Determination of Chlorophenoxy Acid Herbicides in Sewage Water Samples</title><title>Chromatographia</title><addtitle>Chromatographia</addtitle><addtitle>CHROMATOGRAPHIA</addtitle><description>A new automated flow-through adsorption/desorption procedure using a multiwalled carbon nanotube immobilised mixed matrix membrane is described. The membrane consisted of 25% (w/w) multiwall carbon nanotube loading in a cellulose triacetate polymer matrix as support and was cast and embedded in a flow-through cell with a channel of an approximate length of 20 mm, a width of 2 mm, and a depth of 1.5 mm. The membrane immobilised with nanoparticles was activated using 1-octanol as a conditioning solvent. For the analyte adsorption process, 6 mL of the sample was passed through the cell at a flow rate of 0.2 mL min
−1
. The entrapped target analytes were then desorbed dynamically with 60 µL of 2-propanal at a flow rate of 5 µL min
−1
prior to HPLC/UV analysis. The performance of the system was demonstrated for the determination of chlorinated phenoxyacetic acid herbicides in sewage water samples. Under the optimum conditions, the linearity of this method ranged from 50 to 1000 ng mL
−1
, with a correlation coefficient (
r
) ≥ 0.993 and a detection limit varying from 15 to 20 ng mL
−1
. Enrichment factors of up to 55 were achieved with relative recoveries of 95–99% and precision values of 6.1–7.5%.</description><subject>Adsorption</subject><subject>Analytical Chemistry</subject><subject>Automation</subject><subject>Biochemical Research Methods</subject><subject>Biochemistry & Molecular Biology</subject><subject>Carbon fiber reinforced plastics</subject><subject>Cellulose triacetate</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry, Analytical</subject><subject>Chromatography</subject><subject>Correlation coefficients</subject><subject>Flow velocity</subject><subject>Herbicides</subject><subject>High performance liquid chromatography</subject><subject>Laboratory Medicine</subject><subject>Life Sciences & Biomedicine</subject><subject>Linearity</subject><subject>Membranes</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanoparticles</subject><subject>Octanol</subject><subject>Original</subject><subject>Pharmacy</subject><subject>Physical Sciences</subject><subject>Proteomics</subject><subject>Science & Technology</subject><subject>Sewage</subject><issn>0009-5893</issn><issn>1612-1112</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkc1u3CAUhVHVSJ0mfYGukLqs3PJjY1iO3KapNFEjJVKWCOPrGaKxcQArMw_Tdy0zrtpd1Q1c4HxwuAeh95R8ooTUnyMlnNcFYaQgXIqqKF-hFRWUFZRS9hqtCCGqqKTib9DbGJ_ykikhVujnek5-MAk6fOsOp9Gk4A74FoY2mBHyrg0eDikYm5wf8V1wPuDk8cY9z67DzS6ceL8NZtodcX863AH-AgnC4EZzhnyfdXsf_LSD0R-OeG0zegOhdbmAiN2I7-HFbAE_Zi8B35th2kO8Qhe92Ud493u-RA_XXx-am2Lz49v3Zr0pLKcqFawmVSe4baUkVc1IWcqWU8sB6s5UEkoBkpa8FaayTDBRK8oqxUTXClBC8Uv0Ybl2Cv55hpj0k5_DmF_UjEtGREllnVVsUeWGxBig11NwgwlHTYk-paCXFHROQZ9T0GWG5AK9QOv7aB2MFv6AOYaKZieVyhWhjUvnfjV-HlNGP_4_mtV8UcesGLcQ_v7hH_Z-AaqSrNA</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Ganesan, Thipashini</creator><creator>Lim, Hong Ngee</creator><creator>See, Hong Heng</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7849-6929</orcidid><orcidid>https://orcid.org/0000-0003-2436-8953</orcidid></search><sort><creationdate>20200401</creationdate><title>Automated Mixed Matrix Membrane Microextraction Prior to Liquid Chromatography for the Determination of Chlorophenoxy Acid Herbicides in Sewage Water Samples</title><author>Ganesan, Thipashini ; Lim, Hong Ngee ; See, Hong Heng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2705d63cb8805720448b31c3ee7da58e46e8143b6a5c262679125926db6e9693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>Analytical Chemistry</topic><topic>Automation</topic><topic>Biochemical Research Methods</topic><topic>Biochemistry & Molecular Biology</topic><topic>Carbon fiber reinforced plastics</topic><topic>Cellulose triacetate</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry, Analytical</topic><topic>Chromatography</topic><topic>Correlation coefficients</topic><topic>Flow velocity</topic><topic>Herbicides</topic><topic>High performance liquid chromatography</topic><topic>Laboratory Medicine</topic><topic>Life Sciences & Biomedicine</topic><topic>Linearity</topic><topic>Membranes</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanoparticles</topic><topic>Octanol</topic><topic>Original</topic><topic>Pharmacy</topic><topic>Physical Sciences</topic><topic>Proteomics</topic><topic>Science & Technology</topic><topic>Sewage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ganesan, Thipashini</creatorcontrib><creatorcontrib>Lim, Hong Ngee</creatorcontrib><creatorcontrib>See, Hong Heng</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>Chromatographia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ganesan, Thipashini</au><au>Lim, Hong Ngee</au><au>See, Hong Heng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Mixed Matrix Membrane Microextraction Prior to Liquid Chromatography for the Determination of Chlorophenoxy Acid Herbicides in Sewage Water Samples</atitle><jtitle>Chromatographia</jtitle><stitle>Chromatographia</stitle><stitle>CHROMATOGRAPHIA</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>83</volume><issue>4</issue><spage>497</spage><epage>505</epage><pages>497-505</pages><issn>0009-5893</issn><eissn>1612-1112</eissn><abstract>A new automated flow-through adsorption/desorption procedure using a multiwalled carbon nanotube immobilised mixed matrix membrane is described. The membrane consisted of 25% (w/w) multiwall carbon nanotube loading in a cellulose triacetate polymer matrix as support and was cast and embedded in a flow-through cell with a channel of an approximate length of 20 mm, a width of 2 mm, and a depth of 1.5 mm. The membrane immobilised with nanoparticles was activated using 1-octanol as a conditioning solvent. For the analyte adsorption process, 6 mL of the sample was passed through the cell at a flow rate of 0.2 mL min
−1
. The entrapped target analytes were then desorbed dynamically with 60 µL of 2-propanal at a flow rate of 5 µL min
−1
prior to HPLC/UV analysis. The performance of the system was demonstrated for the determination of chlorinated phenoxyacetic acid herbicides in sewage water samples. Under the optimum conditions, the linearity of this method ranged from 50 to 1000 ng mL
−1
, with a correlation coefficient (
r
) ≥ 0.993 and a detection limit varying from 15 to 20 ng mL
−1
. Enrichment factors of up to 55 were achieved with relative recoveries of 95–99% and precision values of 6.1–7.5%.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10337-020-03865-4</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7849-6929</orcidid><orcidid>https://orcid.org/0000-0003-2436-8953</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-5893 |
ispartof | Chromatographia, 2020-04, Vol.83 (4), p.497-505 |
issn | 0009-5893 1612-1112 |
language | eng |
recordid | cdi_proquest_journals_2382064187 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adsorption Analytical Chemistry Automation Biochemical Research Methods Biochemistry & Molecular Biology Carbon fiber reinforced plastics Cellulose triacetate Chemistry Chemistry and Materials Science Chemistry, Analytical Chromatography Correlation coefficients Flow velocity Herbicides High performance liquid chromatography Laboratory Medicine Life Sciences & Biomedicine Linearity Membranes Multi wall carbon nanotubes Nanoparticles Octanol Original Pharmacy Physical Sciences Proteomics Science & Technology Sewage |
title | Automated Mixed Matrix Membrane Microextraction Prior to Liquid Chromatography for the Determination of Chlorophenoxy Acid Herbicides in Sewage Water Samples |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A27%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Mixed%20Matrix%20Membrane%20Microextraction%20Prior%20to%20Liquid%20Chromatography%20for%20the%20Determination%20of%20Chlorophenoxy%20Acid%20Herbicides%20in%20Sewage%20Water%20Samples&rft.jtitle=Chromatographia&rft.au=Ganesan,%20Thipashini&rft.date=2020-04-01&rft.volume=83&rft.issue=4&rft.spage=497&rft.epage=505&rft.pages=497-505&rft.issn=0009-5893&rft.eissn=1612-1112&rft_id=info:doi/10.1007/s10337-020-03865-4&rft_dat=%3Cproquest_sprin%3E2382064187%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2382064187&rft_id=info:pmid/&rfr_iscdi=true |