Generalized Cramér–Rao inequality and uncertainty relation for fisher information on FrFT
Uncertainty principle plays an important role in signal processing, physics and mathematics and so on. In this paper, four novel uncertainty inequalities including the new generalized Cramér–Rao inequalities and the new uncertainty relations on Fisher information associated with fractional Fourier t...
Gespeichert in:
Veröffentlicht in: | Signal, image and video processing image and video processing, 2020-04, Vol.14 (3), p.499-507 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 507 |
---|---|
container_issue | 3 |
container_start_page | 499 |
container_title | Signal, image and video processing |
container_volume | 14 |
creator | Xu, Guanlei Xu, Xiaogang Wang, Xun Wang, Xiaotong |
description | Uncertainty principle plays an important role in signal processing, physics and mathematics and so on. In this paper, four novel uncertainty inequalities including the new generalized Cramér–Rao inequalities and the new uncertainty relations on Fisher information associated with fractional Fourier transform (FrFT) are deduced for the first time. These novel uncertainty inequalities extend the traditional Cramér–Rao inequality and the uncertainty relation on Fisher information to the generalized cases. Compared with the traditional Cramér–Rao inequality, the generalized Cramér–Rao inequalities’ bounds are sharper and tighter. In addition, the generalized Cramér–Rao inequalities build the relation between the Cramér–Rao bounds and the FrFT transform angles, which seem to be quaint compared with the traditional counterparts. Furthermore, the generalized Cramér–Rao inequalities give the relation between the FrFT’s variance and FrFT’s gradient’s integral in only one single transform domain, which is fully novel. On the other hand, compared with the traditional uncertainty relation on Fisher information, the newly deduced uncertainty relations on Fisher information yield the sharper and tighter bounds. These deduced inequalities are novel, and they will yield the potential advantage in the parameter estimation in the FrFT domain. Finally, examples are given to show the efficiency of these newly deduced inequalities. |
doi_str_mv | 10.1007/s11760-019-01571-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2382063737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2382063737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8c5275dd227714510aac617ae3f15ae3b22aa11e3c814c5212fb38af93235bc63</originalsourceid><addsrcrecordid>eNp9UMFOwzAMjRBITGM_wKkS50KcrE16RBMbSJOQ0LghRVmaQqct3Zz2ME78A1_Bd_AnfAmGIrjh2E5sv-dIj7FT4OfAubqIACrnKYeCIlOQFgdsADqXKSiAw983l8dsFOOKk0mhdK4H7GHmg0e7rp99mUzQbt7f8OPl9c42SR38rqNJu09sKJMuOI-trQPV6Ne2rZuQVA0mVR2fPBKcik3fJp_idHHCjiq7jn70cw_Z_fRqMblO57ezm8nlPHUSijbVLhMqK0shlIJxBtxal4OyXlaQUV4KYS2Al07DmLAgqqXUtiqkkNnS5XLIzvq9W2x2nY-tWTUdBvrSCKkFz6WiM2SiRzlsYkRfmS3WG4t7A9x8CWl6IQ0Jab6FNAWRZE-KBA6PHv9W_8P6BJ41d5M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2382063737</pqid></control><display><type>article</type><title>Generalized Cramér–Rao inequality and uncertainty relation for fisher information on FrFT</title><source>SpringerNature Journals</source><creator>Xu, Guanlei ; Xu, Xiaogang ; Wang, Xun ; Wang, Xiaotong</creator><creatorcontrib>Xu, Guanlei ; Xu, Xiaogang ; Wang, Xun ; Wang, Xiaotong</creatorcontrib><description>Uncertainty principle plays an important role in signal processing, physics and mathematics and so on. In this paper, four novel uncertainty inequalities including the new generalized Cramér–Rao inequalities and the new uncertainty relations on Fisher information associated with fractional Fourier transform (FrFT) are deduced for the first time. These novel uncertainty inequalities extend the traditional Cramér–Rao inequality and the uncertainty relation on Fisher information to the generalized cases. Compared with the traditional Cramér–Rao inequality, the generalized Cramér–Rao inequalities’ bounds are sharper and tighter. In addition, the generalized Cramér–Rao inequalities build the relation between the Cramér–Rao bounds and the FrFT transform angles, which seem to be quaint compared with the traditional counterparts. Furthermore, the generalized Cramér–Rao inequalities give the relation between the FrFT’s variance and FrFT’s gradient’s integral in only one single transform domain, which is fully novel. On the other hand, compared with the traditional uncertainty relation on Fisher information, the newly deduced uncertainty relations on Fisher information yield the sharper and tighter bounds. These deduced inequalities are novel, and they will yield the potential advantage in the parameter estimation in the FrFT domain. Finally, examples are given to show the efficiency of these newly deduced inequalities.</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-019-01571-9</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Computer Imaging ; Computer Science ; Domains ; Fisher information ; Fourier transforms ; Image Processing and Computer Vision ; Inequalities ; Inequality ; Multimedia Information Systems ; Original Paper ; Parameter estimation ; Pattern Recognition and Graphics ; Signal processing ; Signal,Image and Speech Processing ; Uncertainty principles ; Vision</subject><ispartof>Signal, image and video processing, 2020-04, Vol.14 (3), p.499-507</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>2019© Springer-Verlag London Ltd., part of Springer Nature 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8c5275dd227714510aac617ae3f15ae3b22aa11e3c814c5212fb38af93235bc63</citedby><cites>FETCH-LOGICAL-c319t-8c5275dd227714510aac617ae3f15ae3b22aa11e3c814c5212fb38af93235bc63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11760-019-01571-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11760-019-01571-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Xu, Guanlei</creatorcontrib><creatorcontrib>Xu, Xiaogang</creatorcontrib><creatorcontrib>Wang, Xun</creatorcontrib><creatorcontrib>Wang, Xiaotong</creatorcontrib><title>Generalized Cramér–Rao inequality and uncertainty relation for fisher information on FrFT</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>Uncertainty principle plays an important role in signal processing, physics and mathematics and so on. In this paper, four novel uncertainty inequalities including the new generalized Cramér–Rao inequalities and the new uncertainty relations on Fisher information associated with fractional Fourier transform (FrFT) are deduced for the first time. These novel uncertainty inequalities extend the traditional Cramér–Rao inequality and the uncertainty relation on Fisher information to the generalized cases. Compared with the traditional Cramér–Rao inequality, the generalized Cramér–Rao inequalities’ bounds are sharper and tighter. In addition, the generalized Cramér–Rao inequalities build the relation between the Cramér–Rao bounds and the FrFT transform angles, which seem to be quaint compared with the traditional counterparts. Furthermore, the generalized Cramér–Rao inequalities give the relation between the FrFT’s variance and FrFT’s gradient’s integral in only one single transform domain, which is fully novel. On the other hand, compared with the traditional uncertainty relation on Fisher information, the newly deduced uncertainty relations on Fisher information yield the sharper and tighter bounds. These deduced inequalities are novel, and they will yield the potential advantage in the parameter estimation in the FrFT domain. Finally, examples are given to show the efficiency of these newly deduced inequalities.</description><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Domains</subject><subject>Fisher information</subject><subject>Fourier transforms</subject><subject>Image Processing and Computer Vision</subject><subject>Inequalities</subject><subject>Inequality</subject><subject>Multimedia Information Systems</subject><subject>Original Paper</subject><subject>Parameter estimation</subject><subject>Pattern Recognition and Graphics</subject><subject>Signal processing</subject><subject>Signal,Image and Speech Processing</subject><subject>Uncertainty principles</subject><subject>Vision</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UMFOwzAMjRBITGM_wKkS50KcrE16RBMbSJOQ0LghRVmaQqct3Zz2ME78A1_Bd_AnfAmGIrjh2E5sv-dIj7FT4OfAubqIACrnKYeCIlOQFgdsADqXKSiAw983l8dsFOOKk0mhdK4H7GHmg0e7rp99mUzQbt7f8OPl9c42SR38rqNJu09sKJMuOI-trQPV6Ne2rZuQVA0mVR2fPBKcik3fJp_idHHCjiq7jn70cw_Z_fRqMblO57ezm8nlPHUSijbVLhMqK0shlIJxBtxal4OyXlaQUV4KYS2Al07DmLAgqqXUtiqkkNnS5XLIzvq9W2x2nY-tWTUdBvrSCKkFz6WiM2SiRzlsYkRfmS3WG4t7A9x8CWl6IQ0Jab6FNAWRZE-KBA6PHv9W_8P6BJ41d5M</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Xu, Guanlei</creator><creator>Xu, Xiaogang</creator><creator>Wang, Xun</creator><creator>Wang, Xiaotong</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200401</creationdate><title>Generalized Cramér–Rao inequality and uncertainty relation for fisher information on FrFT</title><author>Xu, Guanlei ; Xu, Xiaogang ; Wang, Xun ; Wang, Xiaotong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8c5275dd227714510aac617ae3f15ae3b22aa11e3c814c5212fb38af93235bc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Domains</topic><topic>Fisher information</topic><topic>Fourier transforms</topic><topic>Image Processing and Computer Vision</topic><topic>Inequalities</topic><topic>Inequality</topic><topic>Multimedia Information Systems</topic><topic>Original Paper</topic><topic>Parameter estimation</topic><topic>Pattern Recognition and Graphics</topic><topic>Signal processing</topic><topic>Signal,Image and Speech Processing</topic><topic>Uncertainty principles</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Guanlei</creatorcontrib><creatorcontrib>Xu, Xiaogang</creatorcontrib><creatorcontrib>Wang, Xun</creatorcontrib><creatorcontrib>Wang, Xiaotong</creatorcontrib><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Guanlei</au><au>Xu, Xiaogang</au><au>Wang, Xun</au><au>Wang, Xiaotong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Cramér–Rao inequality and uncertainty relation for fisher information on FrFT</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>14</volume><issue>3</issue><spage>499</spage><epage>507</epage><pages>499-507</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>Uncertainty principle plays an important role in signal processing, physics and mathematics and so on. In this paper, four novel uncertainty inequalities including the new generalized Cramér–Rao inequalities and the new uncertainty relations on Fisher information associated with fractional Fourier transform (FrFT) are deduced for the first time. These novel uncertainty inequalities extend the traditional Cramér–Rao inequality and the uncertainty relation on Fisher information to the generalized cases. Compared with the traditional Cramér–Rao inequality, the generalized Cramér–Rao inequalities’ bounds are sharper and tighter. In addition, the generalized Cramér–Rao inequalities build the relation between the Cramér–Rao bounds and the FrFT transform angles, which seem to be quaint compared with the traditional counterparts. Furthermore, the generalized Cramér–Rao inequalities give the relation between the FrFT’s variance and FrFT’s gradient’s integral in only one single transform domain, which is fully novel. On the other hand, compared with the traditional uncertainty relation on Fisher information, the newly deduced uncertainty relations on Fisher information yield the sharper and tighter bounds. These deduced inequalities are novel, and they will yield the potential advantage in the parameter estimation in the FrFT domain. Finally, examples are given to show the efficiency of these newly deduced inequalities.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-019-01571-9</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1863-1703 |
ispartof | Signal, image and video processing, 2020-04, Vol.14 (3), p.499-507 |
issn | 1863-1703 1863-1711 |
language | eng |
recordid | cdi_proquest_journals_2382063737 |
source | SpringerNature Journals |
subjects | Computer Imaging Computer Science Domains Fisher information Fourier transforms Image Processing and Computer Vision Inequalities Inequality Multimedia Information Systems Original Paper Parameter estimation Pattern Recognition and Graphics Signal processing Signal,Image and Speech Processing Uncertainty principles Vision |
title | Generalized Cramér–Rao inequality and uncertainty relation for fisher information on FrFT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A28%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Cram%C3%A9r%E2%80%93Rao%20inequality%20and%20uncertainty%20relation%20for%20fisher%20information%20on%20FrFT&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Xu,%20Guanlei&rft.date=2020-04-01&rft.volume=14&rft.issue=3&rft.spage=499&rft.epage=507&rft.pages=499-507&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-019-01571-9&rft_dat=%3Cproquest_cross%3E2382063737%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2382063737&rft_id=info:pmid/&rfr_iscdi=true |