Vertically aligned VS2 on graphene as a 3D heteroarchitectured anode material with capacitance-dominated lithium storage

Vertically aligned 2D few-layered VS2 nanosheets onto a 2D graphene substrate were, for the first time, crafted by scalable solvothermal and post-annealing processes. The resulting 3D heterostructured VS2-on-graphene (denoted as VS2@Gr) is composed of interconnected nanosheet networks with an effici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-03, Vol.8 (12), p.5882-5889
Hauptverfasser: Huang, Zhiyong, Han, Xiaoyan, Cui, Xun, He, Chengen, Zhang, Jinlong, Wang, Xianggang, Lin, Zhiqun, Yang, Yingkui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5889
container_issue 12
container_start_page 5882
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 8
creator Huang, Zhiyong
Han, Xiaoyan
Cui, Xun
He, Chengen
Zhang, Jinlong
Wang, Xianggang
Lin, Zhiqun
Yang, Yingkui
description Vertically aligned 2D few-layered VS2 nanosheets onto a 2D graphene substrate were, for the first time, crafted by scalable solvothermal and post-annealing processes. The resulting 3D heterostructured VS2-on-graphene (denoted as VS2@Gr) is composed of interconnected nanosheet networks with an efficient exposure of electrochemically active surfaces, nanosheet edges, and abundant porous channels. Such robust hierarchical architectures possess significant advantages over individual building blocks, inhibiting intersheet aggregation, facilitating electrolyte percolation/active-material utilization, promoting ion diffusion/electron conduction, and retaining structural integrity/mechanical stability. Surprisingly, these synergetic characteristics endow VS2@Gr with very favorable capacitive kinetics in the Li-storage behavior. When employed as an anode, the VS2@Gr exhibits remarkable electrochemical performance with large reversible capacity (989 mA h g−1 at 0.1 A g−1), high initial coulombic efficiency (64%), a larger ion diffusion coefficient, superior rate capability (675 mA h g−1 at 1 A g−1), and long cycling stability (77% retention at 10 A g−1 after 10 000 cycles), outperforming its VS2 counterpart with a dominant diffusion-controlled behavior. This work may provide new insights into the architectural engineering of 3D heterostructured nanomaterials comprising two dissimilar 2D constituents for advanced energy storage.
doi_str_mv 10.1039/c9ta13835h
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2382061373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2382061373</sourcerecordid><originalsourceid>FETCH-LOGICAL-g220t-236ed9359930771dd2c302db0b3a947bf155337354f77af804bbd96690cbc9d43</originalsourceid><addsrcrecordid>eNo9jU9LxDAQxYMouKx78RMEPFenmbZpjrL-hQUP6l6XaZK2Wbrpmqao396A4ru8B7838xi7zOE6B1Q3WkXKscayP2ELASVkslDV6X-u63O2mqY9JNUAlVIL9rW1ITpNw_DNaXCdt4ZvXwUfPe8CHXvrLaeJE8c73ttow0hB9y5aHeeQuuRHY_mBEnE08E8Xe67pSNpF8tpmZjw4n6jhQ0JuPvApjoE6e8HOWhomu_rzJXt_uH9bP2Wbl8fn9e0m64SAmAmsrFFYKoUgZW6M0AjCNNAgqUI2bV6WiBLLopWS2hqKpjGqqhToRitT4JJd_f49hvFjtlPc7cc5-DS5E1gLqPJ0jT9YHV-E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2382061373</pqid></control><display><type>article</type><title>Vertically aligned VS2 on graphene as a 3D heteroarchitectured anode material with capacitance-dominated lithium storage</title><source>Royal Society Of Chemistry Journals</source><creator>Huang, Zhiyong ; Han, Xiaoyan ; Cui, Xun ; He, Chengen ; Zhang, Jinlong ; Wang, Xianggang ; Lin, Zhiqun ; Yang, Yingkui</creator><creatorcontrib>Huang, Zhiyong ; Han, Xiaoyan ; Cui, Xun ; He, Chengen ; Zhang, Jinlong ; Wang, Xianggang ; Lin, Zhiqun ; Yang, Yingkui</creatorcontrib><description>Vertically aligned 2D few-layered VS2 nanosheets onto a 2D graphene substrate were, for the first time, crafted by scalable solvothermal and post-annealing processes. The resulting 3D heterostructured VS2-on-graphene (denoted as VS2@Gr) is composed of interconnected nanosheet networks with an efficient exposure of electrochemically active surfaces, nanosheet edges, and abundant porous channels. Such robust hierarchical architectures possess significant advantages over individual building blocks, inhibiting intersheet aggregation, facilitating electrolyte percolation/active-material utilization, promoting ion diffusion/electron conduction, and retaining structural integrity/mechanical stability. Surprisingly, these synergetic characteristics endow VS2@Gr with very favorable capacitive kinetics in the Li-storage behavior. When employed as an anode, the VS2@Gr exhibits remarkable electrochemical performance with large reversible capacity (989 mA h g−1 at 0.1 A g−1), high initial coulombic efficiency (64%), a larger ion diffusion coefficient, superior rate capability (675 mA h g−1 at 1 A g−1), and long cycling stability (77% retention at 10 A g−1 after 10 000 cycles), outperforming its VS2 counterpart with a dominant diffusion-controlled behavior. This work may provide new insights into the architectural engineering of 3D heterostructured nanomaterials comprising two dissimilar 2D constituents for advanced energy storage.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c9ta13835h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anodes ; Capacitance ; Conduction ; Diffusion coefficient ; Diffusion rate ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; Energy storage ; Graphene ; Ion diffusion ; Lithium ; Nanomaterials ; Nanosheets ; Nanotechnology ; Percolation ; Structural integrity ; Structural stability ; Substrates</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-03, Vol.8 (12), p.5882-5889</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Huang, Zhiyong</creatorcontrib><creatorcontrib>Han, Xiaoyan</creatorcontrib><creatorcontrib>Cui, Xun</creatorcontrib><creatorcontrib>He, Chengen</creatorcontrib><creatorcontrib>Zhang, Jinlong</creatorcontrib><creatorcontrib>Wang, Xianggang</creatorcontrib><creatorcontrib>Lin, Zhiqun</creatorcontrib><creatorcontrib>Yang, Yingkui</creatorcontrib><title>Vertically aligned VS2 on graphene as a 3D heteroarchitectured anode material with capacitance-dominated lithium storage</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Vertically aligned 2D few-layered VS2 nanosheets onto a 2D graphene substrate were, for the first time, crafted by scalable solvothermal and post-annealing processes. The resulting 3D heterostructured VS2-on-graphene (denoted as VS2@Gr) is composed of interconnected nanosheet networks with an efficient exposure of electrochemically active surfaces, nanosheet edges, and abundant porous channels. Such robust hierarchical architectures possess significant advantages over individual building blocks, inhibiting intersheet aggregation, facilitating electrolyte percolation/active-material utilization, promoting ion diffusion/electron conduction, and retaining structural integrity/mechanical stability. Surprisingly, these synergetic characteristics endow VS2@Gr with very favorable capacitive kinetics in the Li-storage behavior. When employed as an anode, the VS2@Gr exhibits remarkable electrochemical performance with large reversible capacity (989 mA h g−1 at 0.1 A g−1), high initial coulombic efficiency (64%), a larger ion diffusion coefficient, superior rate capability (675 mA h g−1 at 1 A g−1), and long cycling stability (77% retention at 10 A g−1 after 10 000 cycles), outperforming its VS2 counterpart with a dominant diffusion-controlled behavior. This work may provide new insights into the architectural engineering of 3D heterostructured nanomaterials comprising two dissimilar 2D constituents for advanced energy storage.</description><subject>Anodes</subject><subject>Capacitance</subject><subject>Conduction</subject><subject>Diffusion coefficient</subject><subject>Diffusion rate</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Energy storage</subject><subject>Graphene</subject><subject>Ion diffusion</subject><subject>Lithium</subject><subject>Nanomaterials</subject><subject>Nanosheets</subject><subject>Nanotechnology</subject><subject>Percolation</subject><subject>Structural integrity</subject><subject>Structural stability</subject><subject>Substrates</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9jU9LxDAQxYMouKx78RMEPFenmbZpjrL-hQUP6l6XaZK2Wbrpmqao396A4ru8B7838xi7zOE6B1Q3WkXKscayP2ELASVkslDV6X-u63O2mqY9JNUAlVIL9rW1ITpNw_DNaXCdt4ZvXwUfPe8CHXvrLaeJE8c73ttow0hB9y5aHeeQuuRHY_mBEnE08E8Xe67pSNpF8tpmZjw4n6jhQ0JuPvApjoE6e8HOWhomu_rzJXt_uH9bP2Wbl8fn9e0m64SAmAmsrFFYKoUgZW6M0AjCNNAgqUI2bV6WiBLLopWS2hqKpjGqqhToRitT4JJd_f49hvFjtlPc7cc5-DS5E1gLqPJ0jT9YHV-E</recordid><startdate>20200328</startdate><enddate>20200328</enddate><creator>Huang, Zhiyong</creator><creator>Han, Xiaoyan</creator><creator>Cui, Xun</creator><creator>He, Chengen</creator><creator>Zhang, Jinlong</creator><creator>Wang, Xianggang</creator><creator>Lin, Zhiqun</creator><creator>Yang, Yingkui</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20200328</creationdate><title>Vertically aligned VS2 on graphene as a 3D heteroarchitectured anode material with capacitance-dominated lithium storage</title><author>Huang, Zhiyong ; Han, Xiaoyan ; Cui, Xun ; He, Chengen ; Zhang, Jinlong ; Wang, Xianggang ; Lin, Zhiqun ; Yang, Yingkui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g220t-236ed9359930771dd2c302db0b3a947bf155337354f77af804bbd96690cbc9d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anodes</topic><topic>Capacitance</topic><topic>Conduction</topic><topic>Diffusion coefficient</topic><topic>Diffusion rate</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Energy storage</topic><topic>Graphene</topic><topic>Ion diffusion</topic><topic>Lithium</topic><topic>Nanomaterials</topic><topic>Nanosheets</topic><topic>Nanotechnology</topic><topic>Percolation</topic><topic>Structural integrity</topic><topic>Structural stability</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Zhiyong</creatorcontrib><creatorcontrib>Han, Xiaoyan</creatorcontrib><creatorcontrib>Cui, Xun</creatorcontrib><creatorcontrib>He, Chengen</creatorcontrib><creatorcontrib>Zhang, Jinlong</creatorcontrib><creatorcontrib>Wang, Xianggang</creatorcontrib><creatorcontrib>Lin, Zhiqun</creatorcontrib><creatorcontrib>Yang, Yingkui</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Zhiyong</au><au>Han, Xiaoyan</au><au>Cui, Xun</au><au>He, Chengen</au><au>Zhang, Jinlong</au><au>Wang, Xianggang</au><au>Lin, Zhiqun</au><au>Yang, Yingkui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vertically aligned VS2 on graphene as a 3D heteroarchitectured anode material with capacitance-dominated lithium storage</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-03-28</date><risdate>2020</risdate><volume>8</volume><issue>12</issue><spage>5882</spage><epage>5889</epage><pages>5882-5889</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Vertically aligned 2D few-layered VS2 nanosheets onto a 2D graphene substrate were, for the first time, crafted by scalable solvothermal and post-annealing processes. The resulting 3D heterostructured VS2-on-graphene (denoted as VS2@Gr) is composed of interconnected nanosheet networks with an efficient exposure of electrochemically active surfaces, nanosheet edges, and abundant porous channels. Such robust hierarchical architectures possess significant advantages over individual building blocks, inhibiting intersheet aggregation, facilitating electrolyte percolation/active-material utilization, promoting ion diffusion/electron conduction, and retaining structural integrity/mechanical stability. Surprisingly, these synergetic characteristics endow VS2@Gr with very favorable capacitive kinetics in the Li-storage behavior. When employed as an anode, the VS2@Gr exhibits remarkable electrochemical performance with large reversible capacity (989 mA h g−1 at 0.1 A g−1), high initial coulombic efficiency (64%), a larger ion diffusion coefficient, superior rate capability (675 mA h g−1 at 1 A g−1), and long cycling stability (77% retention at 10 A g−1 after 10 000 cycles), outperforming its VS2 counterpart with a dominant diffusion-controlled behavior. This work may provide new insights into the architectural engineering of 3D heterostructured nanomaterials comprising two dissimilar 2D constituents for advanced energy storage.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9ta13835h</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2020-03, Vol.8 (12), p.5882-5889
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2382061373
source Royal Society Of Chemistry Journals
subjects Anodes
Capacitance
Conduction
Diffusion coefficient
Diffusion rate
Electrochemical analysis
Electrochemistry
Electrode materials
Energy storage
Graphene
Ion diffusion
Lithium
Nanomaterials
Nanosheets
Nanotechnology
Percolation
Structural integrity
Structural stability
Substrates
title Vertically aligned VS2 on graphene as a 3D heteroarchitectured anode material with capacitance-dominated lithium storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T18%3A14%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vertically%20aligned%20VS2%20on%20graphene%20as%20a%203D%20heteroarchitectured%20anode%20material%20with%20capacitance-dominated%20lithium%20storage&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Huang,%20Zhiyong&rft.date=2020-03-28&rft.volume=8&rft.issue=12&rft.spage=5882&rft.epage=5889&rft.pages=5882-5889&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c9ta13835h&rft_dat=%3Cproquest%3E2382061373%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2382061373&rft_id=info:pmid/&rfr_iscdi=true