Size-selective molecular recognition based on a confined DNA molecular sieve using cavity-tunable framework nucleic acids

Size selectivity is an important mechanism for molecular recognition based on the size difference between targets and non-targets. However, rational design of an artificial size-selective molecular recognition system for biological targets in living cells remains challenging. Herein, we construct a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-03, Vol.11 (1), p.1518-1518, Article 1518
Hauptverfasser: Fu, Xiaoyi, Ke, Guoliang, Peng, Fangqi, Hu, Xue, Li, Jiaqi, Shi, Yuyan, Kong, Gezhi, Zhang, Xiao-Bing, Tan, Weihong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1518
container_issue 1
container_start_page 1518
container_title Nature communications
container_volume 11
creator Fu, Xiaoyi
Ke, Guoliang
Peng, Fangqi
Hu, Xue
Li, Jiaqi
Shi, Yuyan
Kong, Gezhi
Zhang, Xiao-Bing
Tan, Weihong
description Size selectivity is an important mechanism for molecular recognition based on the size difference between targets and non-targets. However, rational design of an artificial size-selective molecular recognition system for biological targets in living cells remains challenging. Herein, we construct a DNA molecular sieve for size-selective molecular recognition to improve the biosensing selectivity in living cells. The system consists of functional nucleic acid probes (e.g., DNAzymes, aptamers and molecular beacons) encapsulated into the inner cavity of framework nucleic acid. Thus, small target molecules are able to enter the cavity for efficient molecular recognition, while large molecules are prohibited. The system not only effectively protect probes from nuclease degradation and nonspecific proteins binding, but also successfully realize size-selective discrimination between mature microRNA and precursor microRNA in living cells. Therefore, the DNA molecular sieve provides a simple, general, efficient and controllable approach for size-selective molecular recognition in biomedical studies and clinical diagnoses. Size-selective discrimination is an issue in biosensing. Here, the authors report on a size selective DNA nanocage which excludes agents based on size and protects the probes against degradation, and demonstrate the discrimination between mature and precursor miRNA.
doi_str_mv 10.1038/s41467-020-15297-7
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2382034137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_53ba307b54b744d5b77aee3194ec4a79</doaj_id><sourcerecordid>2382034137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-78e082d0ad44fab2ddb264854fee50490318a819a9c785d9f8302bae1bfe6b363</originalsourceid><addsrcrecordid>eNqNkktv1DAUhSMEolXpH2CBIrFBQgG_MrY3SNWUR6UKFsDaunZuBpeMXexkquHX43TKMGWB8MbX9neOr61TVU8peUUJV6-zoGIhG8JIQ1umZSMfVMeMCNpQyfjDg_qoOs35ipTBNVVCPK6OOGMtZVIfV9vP_ic2GQd0o99gvY6lmgZIdUIXV8GPPobaQsauLgXULobeh7I6_3h2QGePRT1lH1a1g40ft804BbAD1n2CNd7E9L0OkxvQuxqc7_KT6lEPQ8bTu_mk-vru7Zflh-by0_uL5dll41pBxkYqJIp1BDoherCs6yxbCNWKHrElQhNOFSiqQTup2k73ihNmAantcWH5gp9UFzvfLsKVuU5-DWlrInhzuxHTykAafenMtNwCJ9K2wkohutZKCYicaoFOgNTF683O63qya-wchjHBcM_0_knw38wqbowkSmsti8GLO4MUf0yYR7P22eEwQMA4ZcO4kqwV5cqCPv8LvYpTCuWrZooRLiifDdmOcinmnLDfN0OJmYNidkExJSjmNihmFj07fMZe8jsWBXi5A27Qxj47j8HhHitJahkrLdI5VKzQ6v_ppR9hztQyTmEsUr6T5oKHFaY_j_xH_78AxZ7rOg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2382034137</pqid></control><display><type>article</type><title>Size-selective molecular recognition based on a confined DNA molecular sieve using cavity-tunable framework nucleic acids</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Nature Free</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA/Free Journals</source><creator>Fu, Xiaoyi ; Ke, Guoliang ; Peng, Fangqi ; Hu, Xue ; Li, Jiaqi ; Shi, Yuyan ; Kong, Gezhi ; Zhang, Xiao-Bing ; Tan, Weihong</creator><creatorcontrib>Fu, Xiaoyi ; Ke, Guoliang ; Peng, Fangqi ; Hu, Xue ; Li, Jiaqi ; Shi, Yuyan ; Kong, Gezhi ; Zhang, Xiao-Bing ; Tan, Weihong</creatorcontrib><description>Size selectivity is an important mechanism for molecular recognition based on the size difference between targets and non-targets. However, rational design of an artificial size-selective molecular recognition system for biological targets in living cells remains challenging. Herein, we construct a DNA molecular sieve for size-selective molecular recognition to improve the biosensing selectivity in living cells. The system consists of functional nucleic acid probes (e.g., DNAzymes, aptamers and molecular beacons) encapsulated into the inner cavity of framework nucleic acid. Thus, small target molecules are able to enter the cavity for efficient molecular recognition, while large molecules are prohibited. The system not only effectively protect probes from nuclease degradation and nonspecific proteins binding, but also successfully realize size-selective discrimination between mature microRNA and precursor microRNA in living cells. Therefore, the DNA molecular sieve provides a simple, general, efficient and controllable approach for size-selective molecular recognition in biomedical studies and clinical diagnoses. Size-selective discrimination is an issue in biosensing. Here, the authors report on a size selective DNA nanocage which excludes agents based on size and protects the probes against degradation, and demonstrate the discrimination between mature and precursor miRNA.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-15297-7</identifier><identifier>PMID: 32251279</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 631/1647/1888/1889 ; 639/638/11/511 ; 639/638/11/872 ; Aptamers ; Aptamers, Nucleotide - chemistry ; Aptamers, Nucleotide - metabolism ; Biosensing Techniques - methods ; Biosensors ; Cells (biology) ; Degradation ; Deoxyribonucleic acid ; DNA ; DNA probes ; DNA, Catalytic - chemistry ; DNA, Catalytic - metabolism ; Humanities and Social Sciences ; MicroRNAs ; MicroRNAs - metabolism ; miRNA ; Molecular Probes - chemistry ; Molecular Probes - metabolism ; Molecular sieves ; multidisciplinary ; Multidisciplinary Sciences ; Nuclease ; Nucleic acids ; Particle Size ; Precursors ; Probes ; Ribonucleic acid ; RNA ; RNA Precursors - metabolism ; Science ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Science (multidisciplinary) ; Selectivity ; Substrate Specificity ; Target recognition</subject><ispartof>Nature communications, 2020-03, Vol.11 (1), p.1518-1518, Article 1518</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>63</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000522193100002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c540t-78e082d0ad44fab2ddb264854fee50490318a819a9c785d9f8302bae1bfe6b363</citedby><cites>FETCH-LOGICAL-c540t-78e082d0ad44fab2ddb264854fee50490318a819a9c785d9f8302bae1bfe6b363</cites><orcidid>0000-0001-7524-5596 ; 0000-0002-8066-1524</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7089997/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7089997/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2116,27931,27932,28255,41127,42196,51583,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32251279$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Xiaoyi</creatorcontrib><creatorcontrib>Ke, Guoliang</creatorcontrib><creatorcontrib>Peng, Fangqi</creatorcontrib><creatorcontrib>Hu, Xue</creatorcontrib><creatorcontrib>Li, Jiaqi</creatorcontrib><creatorcontrib>Shi, Yuyan</creatorcontrib><creatorcontrib>Kong, Gezhi</creatorcontrib><creatorcontrib>Zhang, Xiao-Bing</creatorcontrib><creatorcontrib>Tan, Weihong</creatorcontrib><title>Size-selective molecular recognition based on a confined DNA molecular sieve using cavity-tunable framework nucleic acids</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>NAT COMMUN</addtitle><addtitle>Nat Commun</addtitle><description>Size selectivity is an important mechanism for molecular recognition based on the size difference between targets and non-targets. However, rational design of an artificial size-selective molecular recognition system for biological targets in living cells remains challenging. Herein, we construct a DNA molecular sieve for size-selective molecular recognition to improve the biosensing selectivity in living cells. The system consists of functional nucleic acid probes (e.g., DNAzymes, aptamers and molecular beacons) encapsulated into the inner cavity of framework nucleic acid. Thus, small target molecules are able to enter the cavity for efficient molecular recognition, while large molecules are prohibited. The system not only effectively protect probes from nuclease degradation and nonspecific proteins binding, but also successfully realize size-selective discrimination between mature microRNA and precursor microRNA in living cells. Therefore, the DNA molecular sieve provides a simple, general, efficient and controllable approach for size-selective molecular recognition in biomedical studies and clinical diagnoses. Size-selective discrimination is an issue in biosensing. Here, the authors report on a size selective DNA nanocage which excludes agents based on size and protects the probes against degradation, and demonstrate the discrimination between mature and precursor miRNA.</description><subject>140/125</subject><subject>631/1647/1888/1889</subject><subject>639/638/11/511</subject><subject>639/638/11/872</subject><subject>Aptamers</subject><subject>Aptamers, Nucleotide - chemistry</subject><subject>Aptamers, Nucleotide - metabolism</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensors</subject><subject>Cells (biology)</subject><subject>Degradation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA probes</subject><subject>DNA, Catalytic - chemistry</subject><subject>DNA, Catalytic - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>MicroRNAs</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>Molecular Probes - chemistry</subject><subject>Molecular Probes - metabolism</subject><subject>Molecular sieves</subject><subject>multidisciplinary</subject><subject>Multidisciplinary Sciences</subject><subject>Nuclease</subject><subject>Nucleic acids</subject><subject>Particle Size</subject><subject>Precursors</subject><subject>Probes</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA Precursors - metabolism</subject><subject>Science</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><subject>Selectivity</subject><subject>Substrate Specificity</subject><subject>Target recognition</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkktv1DAUhSMEolXpH2CBIrFBQgG_MrY3SNWUR6UKFsDaunZuBpeMXexkquHX43TKMGWB8MbX9neOr61TVU8peUUJV6-zoGIhG8JIQ1umZSMfVMeMCNpQyfjDg_qoOs35ipTBNVVCPK6OOGMtZVIfV9vP_ic2GQd0o99gvY6lmgZIdUIXV8GPPobaQsauLgXULobeh7I6_3h2QGePRT1lH1a1g40ft804BbAD1n2CNd7E9L0OkxvQuxqc7_KT6lEPQ8bTu_mk-vru7Zflh-by0_uL5dll41pBxkYqJIp1BDoherCs6yxbCNWKHrElQhNOFSiqQTup2k73ihNmAantcWH5gp9UFzvfLsKVuU5-DWlrInhzuxHTykAafenMtNwCJ9K2wkohutZKCYicaoFOgNTF683O63qya-wchjHBcM_0_knw38wqbowkSmsti8GLO4MUf0yYR7P22eEwQMA4ZcO4kqwV5cqCPv8LvYpTCuWrZooRLiifDdmOcinmnLDfN0OJmYNidkExJSjmNihmFj07fMZe8jsWBXi5A27Qxj47j8HhHitJahkrLdI5VKzQ6v_ppR9hztQyTmEsUr6T5oKHFaY_j_xH_78AxZ7rOg</recordid><startdate>20200323</startdate><enddate>20200323</enddate><creator>Fu, Xiaoyi</creator><creator>Ke, Guoliang</creator><creator>Peng, Fangqi</creator><creator>Hu, Xue</creator><creator>Li, Jiaqi</creator><creator>Shi, Yuyan</creator><creator>Kong, Gezhi</creator><creator>Zhang, Xiao-Bing</creator><creator>Tan, Weihong</creator><general>Nature Publishing Group UK</general><general>Springer Nature</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7524-5596</orcidid><orcidid>https://orcid.org/0000-0002-8066-1524</orcidid></search><sort><creationdate>20200323</creationdate><title>Size-selective molecular recognition based on a confined DNA molecular sieve using cavity-tunable framework nucleic acids</title><author>Fu, Xiaoyi ; Ke, Guoliang ; Peng, Fangqi ; Hu, Xue ; Li, Jiaqi ; Shi, Yuyan ; Kong, Gezhi ; Zhang, Xiao-Bing ; Tan, Weihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-78e082d0ad44fab2ddb264854fee50490318a819a9c785d9f8302bae1bfe6b363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>140/125</topic><topic>631/1647/1888/1889</topic><topic>639/638/11/511</topic><topic>639/638/11/872</topic><topic>Aptamers</topic><topic>Aptamers, Nucleotide - chemistry</topic><topic>Aptamers, Nucleotide - metabolism</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensors</topic><topic>Cells (biology)</topic><topic>Degradation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA probes</topic><topic>DNA, Catalytic - chemistry</topic><topic>DNA, Catalytic - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>MicroRNAs</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>Molecular Probes - chemistry</topic><topic>Molecular Probes - metabolism</topic><topic>Molecular sieves</topic><topic>multidisciplinary</topic><topic>Multidisciplinary Sciences</topic><topic>Nuclease</topic><topic>Nucleic acids</topic><topic>Particle Size</topic><topic>Precursors</topic><topic>Probes</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA Precursors - metabolism</topic><topic>Science</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><topic>Selectivity</topic><topic>Substrate Specificity</topic><topic>Target recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Xiaoyi</creatorcontrib><creatorcontrib>Ke, Guoliang</creatorcontrib><creatorcontrib>Peng, Fangqi</creatorcontrib><creatorcontrib>Hu, Xue</creatorcontrib><creatorcontrib>Li, Jiaqi</creatorcontrib><creatorcontrib>Shi, Yuyan</creatorcontrib><creatorcontrib>Kong, Gezhi</creatorcontrib><creatorcontrib>Zhang, Xiao-Bing</creatorcontrib><creatorcontrib>Tan, Weihong</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Xiaoyi</au><au>Ke, Guoliang</au><au>Peng, Fangqi</au><au>Hu, Xue</au><au>Li, Jiaqi</au><au>Shi, Yuyan</au><au>Kong, Gezhi</au><au>Zhang, Xiao-Bing</au><au>Tan, Weihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Size-selective molecular recognition based on a confined DNA molecular sieve using cavity-tunable framework nucleic acids</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><stitle>NAT COMMUN</stitle><addtitle>Nat Commun</addtitle><date>2020-03-23</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>1518</spage><epage>1518</epage><pages>1518-1518</pages><artnum>1518</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Size selectivity is an important mechanism for molecular recognition based on the size difference between targets and non-targets. However, rational design of an artificial size-selective molecular recognition system for biological targets in living cells remains challenging. Herein, we construct a DNA molecular sieve for size-selective molecular recognition to improve the biosensing selectivity in living cells. The system consists of functional nucleic acid probes (e.g., DNAzymes, aptamers and molecular beacons) encapsulated into the inner cavity of framework nucleic acid. Thus, small target molecules are able to enter the cavity for efficient molecular recognition, while large molecules are prohibited. The system not only effectively protect probes from nuclease degradation and nonspecific proteins binding, but also successfully realize size-selective discrimination between mature microRNA and precursor microRNA in living cells. Therefore, the DNA molecular sieve provides a simple, general, efficient and controllable approach for size-selective molecular recognition in biomedical studies and clinical diagnoses. Size-selective discrimination is an issue in biosensing. Here, the authors report on a size selective DNA nanocage which excludes agents based on size and protects the probes against degradation, and demonstrate the discrimination between mature and precursor miRNA.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32251279</pmid><doi>10.1038/s41467-020-15297-7</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7524-5596</orcidid><orcidid>https://orcid.org/0000-0002-8066-1524</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2020-03, Vol.11 (1), p.1518-1518, Article 1518
issn 2041-1723
2041-1723
language eng
recordid cdi_proquest_journals_2382034137
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Nature Free; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Alma/SFX Local Collection; Springer Nature OA/Free Journals
subjects 140/125
631/1647/1888/1889
639/638/11/511
639/638/11/872
Aptamers
Aptamers, Nucleotide - chemistry
Aptamers, Nucleotide - metabolism
Biosensing Techniques - methods
Biosensors
Cells (biology)
Degradation
Deoxyribonucleic acid
DNA
DNA probes
DNA, Catalytic - chemistry
DNA, Catalytic - metabolism
Humanities and Social Sciences
MicroRNAs
MicroRNAs - metabolism
miRNA
Molecular Probes - chemistry
Molecular Probes - metabolism
Molecular sieves
multidisciplinary
Multidisciplinary Sciences
Nuclease
Nucleic acids
Particle Size
Precursors
Probes
Ribonucleic acid
RNA
RNA Precursors - metabolism
Science
Science & Technology
Science & Technology - Other Topics
Science (multidisciplinary)
Selectivity
Substrate Specificity
Target recognition
title Size-selective molecular recognition based on a confined DNA molecular sieve using cavity-tunable framework nucleic acids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T19%3A24%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Size-selective%20molecular%20recognition%20based%20on%20a%20confined%20DNA%20molecular%20sieve%20using%20cavity-tunable%20framework%20nucleic%20acids&rft.jtitle=Nature%20communications&rft.au=Fu,%20Xiaoyi&rft.date=2020-03-23&rft.volume=11&rft.issue=1&rft.spage=1518&rft.epage=1518&rft.pages=1518-1518&rft.artnum=1518&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-15297-7&rft_dat=%3Cproquest_sprin%3E2382034137%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2382034137&rft_id=info:pmid/32251279&rft_doaj_id=oai_doaj_org_article_53ba307b54b744d5b77aee3194ec4a79&rfr_iscdi=true