Sensitive, Linear, Robust Current-To-Time Converter Circuit for Vehicle Automation Application
Voltage-to-time and current-to-time converters have been used in many recent works as a voltage-to-digital converter for artificial intelligence applications. In general, most of the previous designs use the current-starved technique or a capacitor-based delay unit, which is non-linear, expensive, a...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2020-03, Vol.9 (3), p.490 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 490 |
container_title | Electronics (Basel) |
container_volume | 9 |
creator | Yadav, Nandakishor Kim, Youngbae Alashi, Mahmoud Choi, Kyuwon Ken |
description | Voltage-to-time and current-to-time converters have been used in many recent works as a voltage-to-digital converter for artificial intelligence applications. In general, most of the previous designs use the current-starved technique or a capacitor-based delay unit, which is non-linear, expensive, and requires a large area. In this paper, we propose a highly linear current-to-digital converter. An optimization method is also proposed to generate the optimal converter design containing the smallest number of PMOS and sensitive circuits such as a differential amplifier. This enabled our design to be more stable and robust toward negative bias temperature instability (NBTI) and process variation. The proposed converter circuit implements the point-wise conversion from current-to-time, and it can be used directly for a variety of applications, such as analog-to-digital converters (ADC), used in built-in computational random access (C-RAM) memory. The conversion gain of the proposed circuit is 3.86 ms/A, which is 52 times greater than the conversion gains of state-of-the-art designs. Further, various time-to-digital converter (TDC) circuits are reviewed for the proposed current-to-time converter, and we recommend one circuit for a complete ADC design. |
doi_str_mv | 10.3390/electronics9030490 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2380417061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2380417061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-18b5bff8ca8f0b4c34035c43f9ab9fb7e73042d34586392472ca2f15f8ec3b243</originalsourceid><addsrcrecordid>eNplUM1KxDAYDKLgsu4LeAp43WqSL90mx6X4BwuCVo-WNn7BLN2mJumCb291PQjOZeYwzDBDyDlnlwCaXWGHJgXfOxM1AyY1OyIzwQqdaaHF8R99ShYxbtkEzUEBm5HXJ-yjS26PS7pxPTZhSR99O8ZEyzEE7FNW-axyO6Sl7_cYEgZaumBGl6j1gb7guzMd0vWY_K5Jzvd0PQydMz_6jJzYpou4-OU5eb65rsq7bPNwe1-uN5kBrlPGVZu31irTKMtaaUAyyI0Eq5tW27bAYpol3kDmagVayEKYRlieW4UGWiFhTi4OuUPwHyPGVG_9GPqpshagmOQFW_HJJQ4uE3yMAW09BLdrwmfNWf19Zf3_SvgC3u5qbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2380417061</pqid></control><display><type>article</type><title>Sensitive, Linear, Robust Current-To-Time Converter Circuit for Vehicle Automation Application</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Yadav, Nandakishor ; Kim, Youngbae ; Alashi, Mahmoud ; Choi, Kyuwon Ken</creator><creatorcontrib>Yadav, Nandakishor ; Kim, Youngbae ; Alashi, Mahmoud ; Choi, Kyuwon Ken</creatorcontrib><description>Voltage-to-time and current-to-time converters have been used in many recent works as a voltage-to-digital converter for artificial intelligence applications. In general, most of the previous designs use the current-starved technique or a capacitor-based delay unit, which is non-linear, expensive, and requires a large area. In this paper, we propose a highly linear current-to-digital converter. An optimization method is also proposed to generate the optimal converter design containing the smallest number of PMOS and sensitive circuits such as a differential amplifier. This enabled our design to be more stable and robust toward negative bias temperature instability (NBTI) and process variation. The proposed converter circuit implements the point-wise conversion from current-to-time, and it can be used directly for a variety of applications, such as analog-to-digital converters (ADC), used in built-in computational random access (C-RAM) memory. The conversion gain of the proposed circuit is 3.86 ms/A, which is 52 times greater than the conversion gains of state-of-the-art designs. Further, various time-to-digital converter (TDC) circuits are reviewed for the proposed current-to-time converter, and we recommend one circuit for a complete ADC design.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics9030490</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Amplifier design ; Analog to digital conversion ; Analog to digital converters ; Artificial intelligence ; Circuit design ; Circuits ; Deep learning ; Differential amplifiers ; Electric potential ; Noise ; Optimization ; Random access memory ; Robustness ; Transistors ; Voltage</subject><ispartof>Electronics (Basel), 2020-03, Vol.9 (3), p.490</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-18b5bff8ca8f0b4c34035c43f9ab9fb7e73042d34586392472ca2f15f8ec3b243</citedby><cites>FETCH-LOGICAL-c319t-18b5bff8ca8f0b4c34035c43f9ab9fb7e73042d34586392472ca2f15f8ec3b243</cites><orcidid>0000-0002-8270-1366 ; 0000-0003-0542-7559 ; 0000-0001-6143-7888</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yadav, Nandakishor</creatorcontrib><creatorcontrib>Kim, Youngbae</creatorcontrib><creatorcontrib>Alashi, Mahmoud</creatorcontrib><creatorcontrib>Choi, Kyuwon Ken</creatorcontrib><title>Sensitive, Linear, Robust Current-To-Time Converter Circuit for Vehicle Automation Application</title><title>Electronics (Basel)</title><description>Voltage-to-time and current-to-time converters have been used in many recent works as a voltage-to-digital converter for artificial intelligence applications. In general, most of the previous designs use the current-starved technique or a capacitor-based delay unit, which is non-linear, expensive, and requires a large area. In this paper, we propose a highly linear current-to-digital converter. An optimization method is also proposed to generate the optimal converter design containing the smallest number of PMOS and sensitive circuits such as a differential amplifier. This enabled our design to be more stable and robust toward negative bias temperature instability (NBTI) and process variation. The proposed converter circuit implements the point-wise conversion from current-to-time, and it can be used directly for a variety of applications, such as analog-to-digital converters (ADC), used in built-in computational random access (C-RAM) memory. The conversion gain of the proposed circuit is 3.86 ms/A, which is 52 times greater than the conversion gains of state-of-the-art designs. Further, various time-to-digital converter (TDC) circuits are reviewed for the proposed current-to-time converter, and we recommend one circuit for a complete ADC design.</description><subject>Amplifier design</subject><subject>Analog to digital conversion</subject><subject>Analog to digital converters</subject><subject>Artificial intelligence</subject><subject>Circuit design</subject><subject>Circuits</subject><subject>Deep learning</subject><subject>Differential amplifiers</subject><subject>Electric potential</subject><subject>Noise</subject><subject>Optimization</subject><subject>Random access memory</subject><subject>Robustness</subject><subject>Transistors</subject><subject>Voltage</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNplUM1KxDAYDKLgsu4LeAp43WqSL90mx6X4BwuCVo-WNn7BLN2mJumCb291PQjOZeYwzDBDyDlnlwCaXWGHJgXfOxM1AyY1OyIzwQqdaaHF8R99ShYxbtkEzUEBm5HXJ-yjS26PS7pxPTZhSR99O8ZEyzEE7FNW-axyO6Sl7_cYEgZaumBGl6j1gb7guzMd0vWY_K5Jzvd0PQydMz_6jJzYpou4-OU5eb65rsq7bPNwe1-uN5kBrlPGVZu31irTKMtaaUAyyI0Eq5tW27bAYpol3kDmagVayEKYRlieW4UGWiFhTi4OuUPwHyPGVG_9GPqpshagmOQFW_HJJQ4uE3yMAW09BLdrwmfNWf19Zf3_SvgC3u5qbg</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Yadav, Nandakishor</creator><creator>Kim, Youngbae</creator><creator>Alashi, Mahmoud</creator><creator>Choi, Kyuwon Ken</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-8270-1366</orcidid><orcidid>https://orcid.org/0000-0003-0542-7559</orcidid><orcidid>https://orcid.org/0000-0001-6143-7888</orcidid></search><sort><creationdate>20200301</creationdate><title>Sensitive, Linear, Robust Current-To-Time Converter Circuit for Vehicle Automation Application</title><author>Yadav, Nandakishor ; Kim, Youngbae ; Alashi, Mahmoud ; Choi, Kyuwon Ken</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-18b5bff8ca8f0b4c34035c43f9ab9fb7e73042d34586392472ca2f15f8ec3b243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplifier design</topic><topic>Analog to digital conversion</topic><topic>Analog to digital converters</topic><topic>Artificial intelligence</topic><topic>Circuit design</topic><topic>Circuits</topic><topic>Deep learning</topic><topic>Differential amplifiers</topic><topic>Electric potential</topic><topic>Noise</topic><topic>Optimization</topic><topic>Random access memory</topic><topic>Robustness</topic><topic>Transistors</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yadav, Nandakishor</creatorcontrib><creatorcontrib>Kim, Youngbae</creatorcontrib><creatorcontrib>Alashi, Mahmoud</creatorcontrib><creatorcontrib>Choi, Kyuwon Ken</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yadav, Nandakishor</au><au>Kim, Youngbae</au><au>Alashi, Mahmoud</au><au>Choi, Kyuwon Ken</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensitive, Linear, Robust Current-To-Time Converter Circuit for Vehicle Automation Application</atitle><jtitle>Electronics (Basel)</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>9</volume><issue>3</issue><spage>490</spage><pages>490-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Voltage-to-time and current-to-time converters have been used in many recent works as a voltage-to-digital converter for artificial intelligence applications. In general, most of the previous designs use the current-starved technique or a capacitor-based delay unit, which is non-linear, expensive, and requires a large area. In this paper, we propose a highly linear current-to-digital converter. An optimization method is also proposed to generate the optimal converter design containing the smallest number of PMOS and sensitive circuits such as a differential amplifier. This enabled our design to be more stable and robust toward negative bias temperature instability (NBTI) and process variation. The proposed converter circuit implements the point-wise conversion from current-to-time, and it can be used directly for a variety of applications, such as analog-to-digital converters (ADC), used in built-in computational random access (C-RAM) memory. The conversion gain of the proposed circuit is 3.86 ms/A, which is 52 times greater than the conversion gains of state-of-the-art designs. Further, various time-to-digital converter (TDC) circuits are reviewed for the proposed current-to-time converter, and we recommend one circuit for a complete ADC design.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics9030490</doi><orcidid>https://orcid.org/0000-0002-8270-1366</orcidid><orcidid>https://orcid.org/0000-0003-0542-7559</orcidid><orcidid>https://orcid.org/0000-0001-6143-7888</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2020-03, Vol.9 (3), p.490 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2380417061 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Amplifier design Analog to digital conversion Analog to digital converters Artificial intelligence Circuit design Circuits Deep learning Differential amplifiers Electric potential Noise Optimization Random access memory Robustness Transistors Voltage |
title | Sensitive, Linear, Robust Current-To-Time Converter Circuit for Vehicle Automation Application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A11%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensitive,%20Linear,%20Robust%20Current-To-Time%20Converter%20Circuit%20for%20Vehicle%20Automation%20Application&rft.jtitle=Electronics%20(Basel)&rft.au=Yadav,%20Nandakishor&rft.date=2020-03-01&rft.volume=9&rft.issue=3&rft.spage=490&rft.pages=490-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics9030490&rft_dat=%3Cproquest_cross%3E2380417061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2380417061&rft_id=info:pmid/&rfr_iscdi=true |