Sensitive, Linear, Robust Current-To-Time Converter Circuit for Vehicle Automation Application

Voltage-to-time and current-to-time converters have been used in many recent works as a voltage-to-digital converter for artificial intelligence applications. In general, most of the previous designs use the current-starved technique or a capacitor-based delay unit, which is non-linear, expensive, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2020-03, Vol.9 (3), p.490
Hauptverfasser: Yadav, Nandakishor, Kim, Youngbae, Alashi, Mahmoud, Choi, Kyuwon Ken
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 490
container_title Electronics (Basel)
container_volume 9
creator Yadav, Nandakishor
Kim, Youngbae
Alashi, Mahmoud
Choi, Kyuwon Ken
description Voltage-to-time and current-to-time converters have been used in many recent works as a voltage-to-digital converter for artificial intelligence applications. In general, most of the previous designs use the current-starved technique or a capacitor-based delay unit, which is non-linear, expensive, and requires a large area. In this paper, we propose a highly linear current-to-digital converter. An optimization method is also proposed to generate the optimal converter design containing the smallest number of PMOS and sensitive circuits such as a differential amplifier. This enabled our design to be more stable and robust toward negative bias temperature instability (NBTI) and process variation. The proposed converter circuit implements the point-wise conversion from current-to-time, and it can be used directly for a variety of applications, such as analog-to-digital converters (ADC), used in built-in computational random access (C-RAM) memory. The conversion gain of the proposed circuit is 3.86 ms/A, which is 52 times greater than the conversion gains of state-of-the-art designs. Further, various time-to-digital converter (TDC) circuits are reviewed for the proposed current-to-time converter, and we recommend one circuit for a complete ADC design.
doi_str_mv 10.3390/electronics9030490
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2380417061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2380417061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-18b5bff8ca8f0b4c34035c43f9ab9fb7e73042d34586392472ca2f15f8ec3b243</originalsourceid><addsrcrecordid>eNplUM1KxDAYDKLgsu4LeAp43WqSL90mx6X4BwuCVo-WNn7BLN2mJumCb291PQjOZeYwzDBDyDlnlwCaXWGHJgXfOxM1AyY1OyIzwQqdaaHF8R99ShYxbtkEzUEBm5HXJ-yjS26PS7pxPTZhSR99O8ZEyzEE7FNW-axyO6Sl7_cYEgZaumBGl6j1gb7guzMd0vWY_K5Jzvd0PQydMz_6jJzYpou4-OU5eb65rsq7bPNwe1-uN5kBrlPGVZu31irTKMtaaUAyyI0Eq5tW27bAYpol3kDmagVayEKYRlieW4UGWiFhTi4OuUPwHyPGVG_9GPqpshagmOQFW_HJJQ4uE3yMAW09BLdrwmfNWf19Zf3_SvgC3u5qbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2380417061</pqid></control><display><type>article</type><title>Sensitive, Linear, Robust Current-To-Time Converter Circuit for Vehicle Automation Application</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Yadav, Nandakishor ; Kim, Youngbae ; Alashi, Mahmoud ; Choi, Kyuwon Ken</creator><creatorcontrib>Yadav, Nandakishor ; Kim, Youngbae ; Alashi, Mahmoud ; Choi, Kyuwon Ken</creatorcontrib><description>Voltage-to-time and current-to-time converters have been used in many recent works as a voltage-to-digital converter for artificial intelligence applications. In general, most of the previous designs use the current-starved technique or a capacitor-based delay unit, which is non-linear, expensive, and requires a large area. In this paper, we propose a highly linear current-to-digital converter. An optimization method is also proposed to generate the optimal converter design containing the smallest number of PMOS and sensitive circuits such as a differential amplifier. This enabled our design to be more stable and robust toward negative bias temperature instability (NBTI) and process variation. The proposed converter circuit implements the point-wise conversion from current-to-time, and it can be used directly for a variety of applications, such as analog-to-digital converters (ADC), used in built-in computational random access (C-RAM) memory. The conversion gain of the proposed circuit is 3.86 ms/A, which is 52 times greater than the conversion gains of state-of-the-art designs. Further, various time-to-digital converter (TDC) circuits are reviewed for the proposed current-to-time converter, and we recommend one circuit for a complete ADC design.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics9030490</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Amplifier design ; Analog to digital conversion ; Analog to digital converters ; Artificial intelligence ; Circuit design ; Circuits ; Deep learning ; Differential amplifiers ; Electric potential ; Noise ; Optimization ; Random access memory ; Robustness ; Transistors ; Voltage</subject><ispartof>Electronics (Basel), 2020-03, Vol.9 (3), p.490</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-18b5bff8ca8f0b4c34035c43f9ab9fb7e73042d34586392472ca2f15f8ec3b243</citedby><cites>FETCH-LOGICAL-c319t-18b5bff8ca8f0b4c34035c43f9ab9fb7e73042d34586392472ca2f15f8ec3b243</cites><orcidid>0000-0002-8270-1366 ; 0000-0003-0542-7559 ; 0000-0001-6143-7888</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yadav, Nandakishor</creatorcontrib><creatorcontrib>Kim, Youngbae</creatorcontrib><creatorcontrib>Alashi, Mahmoud</creatorcontrib><creatorcontrib>Choi, Kyuwon Ken</creatorcontrib><title>Sensitive, Linear, Robust Current-To-Time Converter Circuit for Vehicle Automation Application</title><title>Electronics (Basel)</title><description>Voltage-to-time and current-to-time converters have been used in many recent works as a voltage-to-digital converter for artificial intelligence applications. In general, most of the previous designs use the current-starved technique or a capacitor-based delay unit, which is non-linear, expensive, and requires a large area. In this paper, we propose a highly linear current-to-digital converter. An optimization method is also proposed to generate the optimal converter design containing the smallest number of PMOS and sensitive circuits such as a differential amplifier. This enabled our design to be more stable and robust toward negative bias temperature instability (NBTI) and process variation. The proposed converter circuit implements the point-wise conversion from current-to-time, and it can be used directly for a variety of applications, such as analog-to-digital converters (ADC), used in built-in computational random access (C-RAM) memory. The conversion gain of the proposed circuit is 3.86 ms/A, which is 52 times greater than the conversion gains of state-of-the-art designs. Further, various time-to-digital converter (TDC) circuits are reviewed for the proposed current-to-time converter, and we recommend one circuit for a complete ADC design.</description><subject>Amplifier design</subject><subject>Analog to digital conversion</subject><subject>Analog to digital converters</subject><subject>Artificial intelligence</subject><subject>Circuit design</subject><subject>Circuits</subject><subject>Deep learning</subject><subject>Differential amplifiers</subject><subject>Electric potential</subject><subject>Noise</subject><subject>Optimization</subject><subject>Random access memory</subject><subject>Robustness</subject><subject>Transistors</subject><subject>Voltage</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNplUM1KxDAYDKLgsu4LeAp43WqSL90mx6X4BwuCVo-WNn7BLN2mJumCb291PQjOZeYwzDBDyDlnlwCaXWGHJgXfOxM1AyY1OyIzwQqdaaHF8R99ShYxbtkEzUEBm5HXJ-yjS26PS7pxPTZhSR99O8ZEyzEE7FNW-axyO6Sl7_cYEgZaumBGl6j1gb7guzMd0vWY_K5Jzvd0PQydMz_6jJzYpou4-OU5eb65rsq7bPNwe1-uN5kBrlPGVZu31irTKMtaaUAyyI0Eq5tW27bAYpol3kDmagVayEKYRlieW4UGWiFhTi4OuUPwHyPGVG_9GPqpshagmOQFW_HJJQ4uE3yMAW09BLdrwmfNWf19Zf3_SvgC3u5qbg</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Yadav, Nandakishor</creator><creator>Kim, Youngbae</creator><creator>Alashi, Mahmoud</creator><creator>Choi, Kyuwon Ken</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-8270-1366</orcidid><orcidid>https://orcid.org/0000-0003-0542-7559</orcidid><orcidid>https://orcid.org/0000-0001-6143-7888</orcidid></search><sort><creationdate>20200301</creationdate><title>Sensitive, Linear, Robust Current-To-Time Converter Circuit for Vehicle Automation Application</title><author>Yadav, Nandakishor ; Kim, Youngbae ; Alashi, Mahmoud ; Choi, Kyuwon Ken</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-18b5bff8ca8f0b4c34035c43f9ab9fb7e73042d34586392472ca2f15f8ec3b243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplifier design</topic><topic>Analog to digital conversion</topic><topic>Analog to digital converters</topic><topic>Artificial intelligence</topic><topic>Circuit design</topic><topic>Circuits</topic><topic>Deep learning</topic><topic>Differential amplifiers</topic><topic>Electric potential</topic><topic>Noise</topic><topic>Optimization</topic><topic>Random access memory</topic><topic>Robustness</topic><topic>Transistors</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yadav, Nandakishor</creatorcontrib><creatorcontrib>Kim, Youngbae</creatorcontrib><creatorcontrib>Alashi, Mahmoud</creatorcontrib><creatorcontrib>Choi, Kyuwon Ken</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yadav, Nandakishor</au><au>Kim, Youngbae</au><au>Alashi, Mahmoud</au><au>Choi, Kyuwon Ken</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensitive, Linear, Robust Current-To-Time Converter Circuit for Vehicle Automation Application</atitle><jtitle>Electronics (Basel)</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>9</volume><issue>3</issue><spage>490</spage><pages>490-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Voltage-to-time and current-to-time converters have been used in many recent works as a voltage-to-digital converter for artificial intelligence applications. In general, most of the previous designs use the current-starved technique or a capacitor-based delay unit, which is non-linear, expensive, and requires a large area. In this paper, we propose a highly linear current-to-digital converter. An optimization method is also proposed to generate the optimal converter design containing the smallest number of PMOS and sensitive circuits such as a differential amplifier. This enabled our design to be more stable and robust toward negative bias temperature instability (NBTI) and process variation. The proposed converter circuit implements the point-wise conversion from current-to-time, and it can be used directly for a variety of applications, such as analog-to-digital converters (ADC), used in built-in computational random access (C-RAM) memory. The conversion gain of the proposed circuit is 3.86 ms/A, which is 52 times greater than the conversion gains of state-of-the-art designs. Further, various time-to-digital converter (TDC) circuits are reviewed for the proposed current-to-time converter, and we recommend one circuit for a complete ADC design.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics9030490</doi><orcidid>https://orcid.org/0000-0002-8270-1366</orcidid><orcidid>https://orcid.org/0000-0003-0542-7559</orcidid><orcidid>https://orcid.org/0000-0001-6143-7888</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2020-03, Vol.9 (3), p.490
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2380417061
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Amplifier design
Analog to digital conversion
Analog to digital converters
Artificial intelligence
Circuit design
Circuits
Deep learning
Differential amplifiers
Electric potential
Noise
Optimization
Random access memory
Robustness
Transistors
Voltage
title Sensitive, Linear, Robust Current-To-Time Converter Circuit for Vehicle Automation Application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A11%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensitive,%20Linear,%20Robust%20Current-To-Time%20Converter%20Circuit%20for%20Vehicle%20Automation%20Application&rft.jtitle=Electronics%20(Basel)&rft.au=Yadav,%20Nandakishor&rft.date=2020-03-01&rft.volume=9&rft.issue=3&rft.spage=490&rft.pages=490-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics9030490&rft_dat=%3Cproquest_cross%3E2380417061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2380417061&rft_id=info:pmid/&rfr_iscdi=true