Microencapsulation of a eutectic PCM using in situ polymerization technique for thermal energy storage

Summary In the present work, microencapsulated phase change material (M‐PCM) has been synthesized with eutectic mixture (75% SA + 25% CA) as core and melamine formaldehyde (MF) as shell using in situ polymerization. Advanced instrumental techniques like field emission scanning electron microscopy (F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of energy research 2020-04, Vol.44 (5), p.3854-3864
Hauptverfasser: B, Srinivasaraonaik, Singh, Lok Pratap, Tyagi, Inderjeet, Rawat, Anujay, Sinha, Shishir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3864
container_issue 5
container_start_page 3854
container_title International journal of energy research
container_volume 44
creator B, Srinivasaraonaik
Singh, Lok Pratap
Tyagi, Inderjeet
Rawat, Anujay
Sinha, Shishir
description Summary In the present work, microencapsulated phase change material (M‐PCM) has been synthesized with eutectic mixture (75% SA + 25% CA) as core and melamine formaldehyde (MF) as shell using in situ polymerization. Advanced instrumental techniques like field emission scanning electron microscopy (FE‐SEM), Fourier‐transform infrared spectroscopy (FT‐IR), particle size analyzer (PSA), thermogravimetric/differential thermal analysis (TG/DTA), differential scanning calorimetry (DSC), and thermal conductivity analyzer (TCi) were used to characterize the synthesized M‐PCM, and impact of effective parameters like pH and agitator speed on the encapsulation process was also elucidated. Results obtained reveal that at the optimized pH (3.2) and agitator speed (1500 rpm) M‐PCM possess smooth surface morphology, spherical in shape with particle size of 10.41 μm. Based on FT‐IR analysis, it was observed that the synthesized M‐PCM was uniformly encapsulated by MF resin with eutectic mixture in the core. The encapsulation process results in the improvement of the thermal stability of eutectic mixture, it increases from 202.5 to 212.3°C, and the encapsulation efficiency of the M‐PCM is found to be 85.3%. The melting point and latent heat of fusion of M‐PCM were found to be 34.5°C and 103.9 kJ/kg, respectively. Microencapsulation of PCM is carried out by in situ polymerization. The melting point of microencapsulated PCMs is 34.5°C. The latent heat of fusion of microencapsulated PCMs is103.9 kJ/kg. The encapsulation efficiency of the microencapsulated PCMs is 85.3%. The thermal stability of eutectic mixture is increased from 202.5°C to 212.3°C. Microencapsulation of Phasechange materials with eutectic mixture (75% SA + 25% CA) as core and melamineformaldehyde (MF) as shell has been carried out using the cost effective method. The melting point and latent heat of fusion of synthesized M‐PCM was found to be 34.5 °C and 103.9 kJ/kg respectively.
doi_str_mv 10.1002/er.5182
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2380015176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2380015176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3882-c0ef4595241e556a114e79a3d42679ef21adb03158b7608cb811d6f29b51f1013</originalsourceid><addsrcrecordid>eNp10FtLwzAUB_AgCs4pfoWADz5IZ07a9PIoY15goojC3kLanWwZXVOTFqmf3sz66tN5OD_O5U_IJbAZMMZv0c0E5PyITIAVRQSQrI7JhMVpHBUsW52SM-93jIUeZBOin03lLDaVan1fq87YhlpNFcW-w6ozFX2dP9Pem2ZDTUO96Xra2nrYozPfIw9u25jPHqm2jnZbdHtVU2zQbQbqO-vUBs_JiVa1x4u_OiUf94v3-WO0fHl4mt8toyrOcx5VDHUiCsETQCFSFY7HrFDxOuFpVqDmoNYli0HkZZayvCpzgHWqeVEK0MAgnpKrcW7rbLjId3Jne9eElZLHOWMgIEuDuh5VeN17h1q2zuyVGyQweQhRopOHEIO8GeWXqXH4j8nF26_-AZ8-ckw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2380015176</pqid></control><display><type>article</type><title>Microencapsulation of a eutectic PCM using in situ polymerization technique for thermal energy storage</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>B, Srinivasaraonaik ; Singh, Lok Pratap ; Tyagi, Inderjeet ; Rawat, Anujay ; Sinha, Shishir</creator><creatorcontrib>B, Srinivasaraonaik ; Singh, Lok Pratap ; Tyagi, Inderjeet ; Rawat, Anujay ; Sinha, Shishir</creatorcontrib><description>Summary In the present work, microencapsulated phase change material (M‐PCM) has been synthesized with eutectic mixture (75% SA + 25% CA) as core and melamine formaldehyde (MF) as shell using in situ polymerization. Advanced instrumental techniques like field emission scanning electron microscopy (FE‐SEM), Fourier‐transform infrared spectroscopy (FT‐IR), particle size analyzer (PSA), thermogravimetric/differential thermal analysis (TG/DTA), differential scanning calorimetry (DSC), and thermal conductivity analyzer (TCi) were used to characterize the synthesized M‐PCM, and impact of effective parameters like pH and agitator speed on the encapsulation process was also elucidated. Results obtained reveal that at the optimized pH (3.2) and agitator speed (1500 rpm) M‐PCM possess smooth surface morphology, spherical in shape with particle size of 10.41 μm. Based on FT‐IR analysis, it was observed that the synthesized M‐PCM was uniformly encapsulated by MF resin with eutectic mixture in the core. The encapsulation process results in the improvement of the thermal stability of eutectic mixture, it increases from 202.5 to 212.3°C, and the encapsulation efficiency of the M‐PCM is found to be 85.3%. The melting point and latent heat of fusion of M‐PCM were found to be 34.5°C and 103.9 kJ/kg, respectively. Microencapsulation of PCM is carried out by in situ polymerization. The melting point of microencapsulated PCMs is 34.5°C. The latent heat of fusion of microencapsulated PCMs is103.9 kJ/kg. The encapsulation efficiency of the microencapsulated PCMs is 85.3%. The thermal stability of eutectic mixture is increased from 202.5°C to 212.3°C. Microencapsulation of Phasechange materials with eutectic mixture (75% SA + 25% CA) as core and melamineformaldehyde (MF) as shell has been carried out using the cost effective method. The melting point and latent heat of fusion of synthesized M‐PCM was found to be 34.5 °C and 103.9 kJ/kg respectively.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.5182</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Inc</publisher><subject>Analytical methods ; Calorimetry ; Differential scanning calorimetry ; Differential thermal analysis ; Electron microscopy ; Encapsulation ; Energy storage ; eutectic mixture ; Eutectic temperature ; Field emission microscopy ; Heat of fusion ; in situ polymerization ; Infrared analysis ; Infrared spectroscopy ; Latent heat ; Melamine ; Melting point ; Melting points ; Microencapsulation ; Microprocessors ; Morphology ; Particle size ; pH effects ; Phase change materials ; Polymerization ; Scanning electron microscopy ; Synthesis ; Thermal analysis ; Thermal conductivity ; Thermal energy ; thermal energy storage ; Thermal stability ; Thermogravimetric analysis</subject><ispartof>International journal of energy research, 2020-04, Vol.44 (5), p.3854-3864</ispartof><rights>2020 John Wiley &amp; Sons Ltd</rights><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3882-c0ef4595241e556a114e79a3d42679ef21adb03158b7608cb811d6f29b51f1013</citedby><cites>FETCH-LOGICAL-c3882-c0ef4595241e556a114e79a3d42679ef21adb03158b7608cb811d6f29b51f1013</cites><orcidid>0000-0001-6689-6741</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.5182$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.5182$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>B, Srinivasaraonaik</creatorcontrib><creatorcontrib>Singh, Lok Pratap</creatorcontrib><creatorcontrib>Tyagi, Inderjeet</creatorcontrib><creatorcontrib>Rawat, Anujay</creatorcontrib><creatorcontrib>Sinha, Shishir</creatorcontrib><title>Microencapsulation of a eutectic PCM using in situ polymerization technique for thermal energy storage</title><title>International journal of energy research</title><description>Summary In the present work, microencapsulated phase change material (M‐PCM) has been synthesized with eutectic mixture (75% SA + 25% CA) as core and melamine formaldehyde (MF) as shell using in situ polymerization. Advanced instrumental techniques like field emission scanning electron microscopy (FE‐SEM), Fourier‐transform infrared spectroscopy (FT‐IR), particle size analyzer (PSA), thermogravimetric/differential thermal analysis (TG/DTA), differential scanning calorimetry (DSC), and thermal conductivity analyzer (TCi) were used to characterize the synthesized M‐PCM, and impact of effective parameters like pH and agitator speed on the encapsulation process was also elucidated. Results obtained reveal that at the optimized pH (3.2) and agitator speed (1500 rpm) M‐PCM possess smooth surface morphology, spherical in shape with particle size of 10.41 μm. Based on FT‐IR analysis, it was observed that the synthesized M‐PCM was uniformly encapsulated by MF resin with eutectic mixture in the core. The encapsulation process results in the improvement of the thermal stability of eutectic mixture, it increases from 202.5 to 212.3°C, and the encapsulation efficiency of the M‐PCM is found to be 85.3%. The melting point and latent heat of fusion of M‐PCM were found to be 34.5°C and 103.9 kJ/kg, respectively. Microencapsulation of PCM is carried out by in situ polymerization. The melting point of microencapsulated PCMs is 34.5°C. The latent heat of fusion of microencapsulated PCMs is103.9 kJ/kg. The encapsulation efficiency of the microencapsulated PCMs is 85.3%. The thermal stability of eutectic mixture is increased from 202.5°C to 212.3°C. Microencapsulation of Phasechange materials with eutectic mixture (75% SA + 25% CA) as core and melamineformaldehyde (MF) as shell has been carried out using the cost effective method. The melting point and latent heat of fusion of synthesized M‐PCM was found to be 34.5 °C and 103.9 kJ/kg respectively.</description><subject>Analytical methods</subject><subject>Calorimetry</subject><subject>Differential scanning calorimetry</subject><subject>Differential thermal analysis</subject><subject>Electron microscopy</subject><subject>Encapsulation</subject><subject>Energy storage</subject><subject>eutectic mixture</subject><subject>Eutectic temperature</subject><subject>Field emission microscopy</subject><subject>Heat of fusion</subject><subject>in situ polymerization</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Latent heat</subject><subject>Melamine</subject><subject>Melting point</subject><subject>Melting points</subject><subject>Microencapsulation</subject><subject>Microprocessors</subject><subject>Morphology</subject><subject>Particle size</subject><subject>pH effects</subject><subject>Phase change materials</subject><subject>Polymerization</subject><subject>Scanning electron microscopy</subject><subject>Synthesis</subject><subject>Thermal analysis</subject><subject>Thermal conductivity</subject><subject>Thermal energy</subject><subject>thermal energy storage</subject><subject>Thermal stability</subject><subject>Thermogravimetric analysis</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10FtLwzAUB_AgCs4pfoWADz5IZ07a9PIoY15goojC3kLanWwZXVOTFqmf3sz66tN5OD_O5U_IJbAZMMZv0c0E5PyITIAVRQSQrI7JhMVpHBUsW52SM-93jIUeZBOin03lLDaVan1fq87YhlpNFcW-w6ozFX2dP9Pem2ZDTUO96Xra2nrYozPfIw9u25jPHqm2jnZbdHtVU2zQbQbqO-vUBs_JiVa1x4u_OiUf94v3-WO0fHl4mt8toyrOcx5VDHUiCsETQCFSFY7HrFDxOuFpVqDmoNYli0HkZZayvCpzgHWqeVEK0MAgnpKrcW7rbLjId3Jne9eElZLHOWMgIEuDuh5VeN17h1q2zuyVGyQweQhRopOHEIO8GeWXqXH4j8nF26_-AZ8-ckw</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>B, Srinivasaraonaik</creator><creator>Singh, Lok Pratap</creator><creator>Tyagi, Inderjeet</creator><creator>Rawat, Anujay</creator><creator>Sinha, Shishir</creator><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-6689-6741</orcidid></search><sort><creationdate>202004</creationdate><title>Microencapsulation of a eutectic PCM using in situ polymerization technique for thermal energy storage</title><author>B, Srinivasaraonaik ; Singh, Lok Pratap ; Tyagi, Inderjeet ; Rawat, Anujay ; Sinha, Shishir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3882-c0ef4595241e556a114e79a3d42679ef21adb03158b7608cb811d6f29b51f1013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical methods</topic><topic>Calorimetry</topic><topic>Differential scanning calorimetry</topic><topic>Differential thermal analysis</topic><topic>Electron microscopy</topic><topic>Encapsulation</topic><topic>Energy storage</topic><topic>eutectic mixture</topic><topic>Eutectic temperature</topic><topic>Field emission microscopy</topic><topic>Heat of fusion</topic><topic>in situ polymerization</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Latent heat</topic><topic>Melamine</topic><topic>Melting point</topic><topic>Melting points</topic><topic>Microencapsulation</topic><topic>Microprocessors</topic><topic>Morphology</topic><topic>Particle size</topic><topic>pH effects</topic><topic>Phase change materials</topic><topic>Polymerization</topic><topic>Scanning electron microscopy</topic><topic>Synthesis</topic><topic>Thermal analysis</topic><topic>Thermal conductivity</topic><topic>Thermal energy</topic><topic>thermal energy storage</topic><topic>Thermal stability</topic><topic>Thermogravimetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>B, Srinivasaraonaik</creatorcontrib><creatorcontrib>Singh, Lok Pratap</creatorcontrib><creatorcontrib>Tyagi, Inderjeet</creatorcontrib><creatorcontrib>Rawat, Anujay</creatorcontrib><creatorcontrib>Sinha, Shishir</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>B, Srinivasaraonaik</au><au>Singh, Lok Pratap</au><au>Tyagi, Inderjeet</au><au>Rawat, Anujay</au><au>Sinha, Shishir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microencapsulation of a eutectic PCM using in situ polymerization technique for thermal energy storage</atitle><jtitle>International journal of energy research</jtitle><date>2020-04</date><risdate>2020</risdate><volume>44</volume><issue>5</issue><spage>3854</spage><epage>3864</epage><pages>3854-3864</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Summary In the present work, microencapsulated phase change material (M‐PCM) has been synthesized with eutectic mixture (75% SA + 25% CA) as core and melamine formaldehyde (MF) as shell using in situ polymerization. Advanced instrumental techniques like field emission scanning electron microscopy (FE‐SEM), Fourier‐transform infrared spectroscopy (FT‐IR), particle size analyzer (PSA), thermogravimetric/differential thermal analysis (TG/DTA), differential scanning calorimetry (DSC), and thermal conductivity analyzer (TCi) were used to characterize the synthesized M‐PCM, and impact of effective parameters like pH and agitator speed on the encapsulation process was also elucidated. Results obtained reveal that at the optimized pH (3.2) and agitator speed (1500 rpm) M‐PCM possess smooth surface morphology, spherical in shape with particle size of 10.41 μm. Based on FT‐IR analysis, it was observed that the synthesized M‐PCM was uniformly encapsulated by MF resin with eutectic mixture in the core. The encapsulation process results in the improvement of the thermal stability of eutectic mixture, it increases from 202.5 to 212.3°C, and the encapsulation efficiency of the M‐PCM is found to be 85.3%. The melting point and latent heat of fusion of M‐PCM were found to be 34.5°C and 103.9 kJ/kg, respectively. Microencapsulation of PCM is carried out by in situ polymerization. The melting point of microencapsulated PCMs is 34.5°C. The latent heat of fusion of microencapsulated PCMs is103.9 kJ/kg. The encapsulation efficiency of the microencapsulated PCMs is 85.3%. The thermal stability of eutectic mixture is increased from 202.5°C to 212.3°C. Microencapsulation of Phasechange materials with eutectic mixture (75% SA + 25% CA) as core and melamineformaldehyde (MF) as shell has been carried out using the cost effective method. The melting point and latent heat of fusion of synthesized M‐PCM was found to be 34.5 °C and 103.9 kJ/kg respectively.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/er.5182</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6689-6741</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-907X
ispartof International journal of energy research, 2020-04, Vol.44 (5), p.3854-3864
issn 0363-907X
1099-114X
language eng
recordid cdi_proquest_journals_2380015176
source Wiley Online Library Journals Frontfile Complete
subjects Analytical methods
Calorimetry
Differential scanning calorimetry
Differential thermal analysis
Electron microscopy
Encapsulation
Energy storage
eutectic mixture
Eutectic temperature
Field emission microscopy
Heat of fusion
in situ polymerization
Infrared analysis
Infrared spectroscopy
Latent heat
Melamine
Melting point
Melting points
Microencapsulation
Microprocessors
Morphology
Particle size
pH effects
Phase change materials
Polymerization
Scanning electron microscopy
Synthesis
Thermal analysis
Thermal conductivity
Thermal energy
thermal energy storage
Thermal stability
Thermogravimetric analysis
title Microencapsulation of a eutectic PCM using in situ polymerization technique for thermal energy storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A09%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microencapsulation%20of%20a%20eutectic%20PCM%20using%20in%20situ%20polymerization%20technique%20for%20thermal%20energy%20storage&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=B,%20Srinivasaraonaik&rft.date=2020-04&rft.volume=44&rft.issue=5&rft.spage=3854&rft.epage=3864&rft.pages=3854-3864&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1002/er.5182&rft_dat=%3Cproquest_cross%3E2380015176%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2380015176&rft_id=info:pmid/&rfr_iscdi=true