Spectral Characteristics and Spatial Distribution of Thermal Donors in n‐Type Czochralski‐Silicon Wafers

In monocrystalline silicon rich in oxygen, thermal donors are formed at temperatures around 450 °C. These are widely accepted to be electrically active oxygen clusters acting as double donors to the conduction band. Exposure to higher temperatures (650 °C) reportedly eliminates them. Herein, a syste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2020-03, Vol.217 (6), p.n/a
Hauptverfasser: Olsen, Espen, Helander, Malin I., Mehl, Torbjørn, Burud, Ingunn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page
container_title Physica status solidi. A, Applications and materials science
container_volume 217
creator Olsen, Espen
Helander, Malin I.
Mehl, Torbjørn
Burud, Ingunn
description In monocrystalline silicon rich in oxygen, thermal donors are formed at temperatures around 450 °C. These are widely accepted to be electrically active oxygen clusters acting as double donors to the conduction band. Exposure to higher temperatures (650 °C) reportedly eliminates them. Herein, a systematic study of the spatial distribution of thermal donor formation and elimination by heat treatment at 450 and 650 °C in commercial n‐type Czochralski‐silicon wafers with high and low content of interstitial oxygen atoms are reported. Hyperspectral imaging techniques with spectral and spatial resolution are used. Thermal donors form at 450 °C in a ring‐like pattern, significantly enhanced in oxygen‐rich material. The results indicate the formation of at least six different donor clusters, leading to a strong, characteristic spectral response upon photoexcitation. The emission related to direct band‐to‐band recombination (1.100 eV) become systematically stronger upon heat treatment at 450 °C. Subsequent treatment at 650 °C rearrange the spectral response into a single, homogenously distributed, broadband emission with peak energy of 0.767 eV. The emission related to band‐to‐band recombination is significantly reduced. A previously studied emission at 0.807 eV (D1) commonly related to impurities is found, providing evidence that this signal is related to the combination of defects and oxygen. The study reports on the coupled spatial distribution and spectral characteristics of photoluminescence associated with thermal donor formation and elimination in commercial as‐cut n‐type Cz‐silicon wafers intended for use in solar cells. The results show a characteristic spectrum due to radiative recombination through traps in the bandgap with a set of individual peaks distributed as rings.
doi_str_mv 10.1002/pssa.201900884
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2379698667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2379698667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3574-2da37ab5ab61c68dcfa1778f891bfc74579e5975c2418d1200f2cf3475e298733</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKtb1wHXU5PMT5JlGbUKBYWpuAyZTEJTp5MxmSJ15SP4jD6JKZW6dHUv55zvXjgAXGI0wQiR6z4EOSEIc4QYy47ACLOCJEWK-fFhR-gUnIWwQijLM4pHoK16rQYvW1gupZdq0N6GwaoAZdfAqpeDjd5N1LytN4N1HXQGLpbar3e665wP0Haw-_78Wmx7DcsPp5bxXni1Uapsa1VkXqTRPpyDExMdffE7x-D57nZR3ifzx9lDOZ0nKs1plpBGplTWuawLrArWKCMxpcwwjmujaJZTrnNOc0UyzBpMEDJEmTSjuSac0TQdg6v93d67t40Og1i5je_iS0FSygvOioLG1GSfUt6F4LURvbdr6bcCI7FrVOwaFYdGI8D3wLtt9faftHiqqukf-wNLmX2W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2379698667</pqid></control><display><type>article</type><title>Spectral Characteristics and Spatial Distribution of Thermal Donors in n‐Type Czochralski‐Silicon Wafers</title><source>Wiley Online Library</source><creator>Olsen, Espen ; Helander, Malin I. ; Mehl, Torbjørn ; Burud, Ingunn</creator><creatorcontrib>Olsen, Espen ; Helander, Malin I. ; Mehl, Torbjørn ; Burud, Ingunn</creatorcontrib><description>In monocrystalline silicon rich in oxygen, thermal donors are formed at temperatures around 450 °C. These are widely accepted to be electrically active oxygen clusters acting as double donors to the conduction band. Exposure to higher temperatures (650 °C) reportedly eliminates them. Herein, a systematic study of the spatial distribution of thermal donor formation and elimination by heat treatment at 450 and 650 °C in commercial n‐type Czochralski‐silicon wafers with high and low content of interstitial oxygen atoms are reported. Hyperspectral imaging techniques with spectral and spatial resolution are used. Thermal donors form at 450 °C in a ring‐like pattern, significantly enhanced in oxygen‐rich material. The results indicate the formation of at least six different donor clusters, leading to a strong, characteristic spectral response upon photoexcitation. The emission related to direct band‐to‐band recombination (1.100 eV) become systematically stronger upon heat treatment at 450 °C. Subsequent treatment at 650 °C rearrange the spectral response into a single, homogenously distributed, broadband emission with peak energy of 0.767 eV. The emission related to band‐to‐band recombination is significantly reduced. A previously studied emission at 0.807 eV (D1) commonly related to impurities is found, providing evidence that this signal is related to the combination of defects and oxygen. The study reports on the coupled spatial distribution and spectral characteristics of photoluminescence associated with thermal donor formation and elimination in commercial as‐cut n‐type Cz‐silicon wafers intended for use in solar cells. The results show a characteristic spectrum due to radiative recombination through traps in the bandgap with a set of individual peaks distributed as rings.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.201900884</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Broadband ; Clusters ; Conduction bands ; Emission analysis ; Heat treatment ; Hyperspectral imaging ; Imaging techniques ; Oxygen atoms ; Photoexcitation ; recombination ; Silicon ; Silicon wafers ; Spatial distribution ; Spatial resolution ; Spectra ; Spectral sensitivity ; spectroscopy ; thermal donors ; Wafers</subject><ispartof>Physica status solidi. A, Applications and materials science, 2020-03, Vol.217 (6), p.n/a</ispartof><rights>2020 The Authors. Published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3574-2da37ab5ab61c68dcfa1778f891bfc74579e5975c2418d1200f2cf3475e298733</citedby><cites>FETCH-LOGICAL-c3574-2da37ab5ab61c68dcfa1778f891bfc74579e5975c2418d1200f2cf3475e298733</cites><orcidid>0000-0001-9721-1637</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.201900884$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.201900884$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Olsen, Espen</creatorcontrib><creatorcontrib>Helander, Malin I.</creatorcontrib><creatorcontrib>Mehl, Torbjørn</creatorcontrib><creatorcontrib>Burud, Ingunn</creatorcontrib><title>Spectral Characteristics and Spatial Distribution of Thermal Donors in n‐Type Czochralski‐Silicon Wafers</title><title>Physica status solidi. A, Applications and materials science</title><description>In monocrystalline silicon rich in oxygen, thermal donors are formed at temperatures around 450 °C. These are widely accepted to be electrically active oxygen clusters acting as double donors to the conduction band. Exposure to higher temperatures (650 °C) reportedly eliminates them. Herein, a systematic study of the spatial distribution of thermal donor formation and elimination by heat treatment at 450 and 650 °C in commercial n‐type Czochralski‐silicon wafers with high and low content of interstitial oxygen atoms are reported. Hyperspectral imaging techniques with spectral and spatial resolution are used. Thermal donors form at 450 °C in a ring‐like pattern, significantly enhanced in oxygen‐rich material. The results indicate the formation of at least six different donor clusters, leading to a strong, characteristic spectral response upon photoexcitation. The emission related to direct band‐to‐band recombination (1.100 eV) become systematically stronger upon heat treatment at 450 °C. Subsequent treatment at 650 °C rearrange the spectral response into a single, homogenously distributed, broadband emission with peak energy of 0.767 eV. The emission related to band‐to‐band recombination is significantly reduced. A previously studied emission at 0.807 eV (D1) commonly related to impurities is found, providing evidence that this signal is related to the combination of defects and oxygen. The study reports on the coupled spatial distribution and spectral characteristics of photoluminescence associated with thermal donor formation and elimination in commercial as‐cut n‐type Cz‐silicon wafers intended for use in solar cells. The results show a characteristic spectrum due to radiative recombination through traps in the bandgap with a set of individual peaks distributed as rings.</description><subject>Broadband</subject><subject>Clusters</subject><subject>Conduction bands</subject><subject>Emission analysis</subject><subject>Heat treatment</subject><subject>Hyperspectral imaging</subject><subject>Imaging techniques</subject><subject>Oxygen atoms</subject><subject>Photoexcitation</subject><subject>recombination</subject><subject>Silicon</subject><subject>Silicon wafers</subject><subject>Spatial distribution</subject><subject>Spatial resolution</subject><subject>Spectra</subject><subject>Spectral sensitivity</subject><subject>spectroscopy</subject><subject>thermal donors</subject><subject>Wafers</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkM1KAzEUhYMoWKtb1wHXU5PMT5JlGbUKBYWpuAyZTEJTp5MxmSJ15SP4jD6JKZW6dHUv55zvXjgAXGI0wQiR6z4EOSEIc4QYy47ACLOCJEWK-fFhR-gUnIWwQijLM4pHoK16rQYvW1gupZdq0N6GwaoAZdfAqpeDjd5N1LytN4N1HXQGLpbar3e665wP0Haw-_78Wmx7DcsPp5bxXni1Uapsa1VkXqTRPpyDExMdffE7x-D57nZR3ifzx9lDOZ0nKs1plpBGplTWuawLrArWKCMxpcwwjmujaJZTrnNOc0UyzBpMEDJEmTSjuSac0TQdg6v93d67t40Og1i5je_iS0FSygvOioLG1GSfUt6F4LURvbdr6bcCI7FrVOwaFYdGI8D3wLtt9faftHiqqukf-wNLmX2W</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Olsen, Espen</creator><creator>Helander, Malin I.</creator><creator>Mehl, Torbjørn</creator><creator>Burud, Ingunn</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9721-1637</orcidid></search><sort><creationdate>202003</creationdate><title>Spectral Characteristics and Spatial Distribution of Thermal Donors in n‐Type Czochralski‐Silicon Wafers</title><author>Olsen, Espen ; Helander, Malin I. ; Mehl, Torbjørn ; Burud, Ingunn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3574-2da37ab5ab61c68dcfa1778f891bfc74579e5975c2418d1200f2cf3475e298733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Broadband</topic><topic>Clusters</topic><topic>Conduction bands</topic><topic>Emission analysis</topic><topic>Heat treatment</topic><topic>Hyperspectral imaging</topic><topic>Imaging techniques</topic><topic>Oxygen atoms</topic><topic>Photoexcitation</topic><topic>recombination</topic><topic>Silicon</topic><topic>Silicon wafers</topic><topic>Spatial distribution</topic><topic>Spatial resolution</topic><topic>Spectra</topic><topic>Spectral sensitivity</topic><topic>spectroscopy</topic><topic>thermal donors</topic><topic>Wafers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olsen, Espen</creatorcontrib><creatorcontrib>Helander, Malin I.</creatorcontrib><creatorcontrib>Mehl, Torbjørn</creatorcontrib><creatorcontrib>Burud, Ingunn</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olsen, Espen</au><au>Helander, Malin I.</au><au>Mehl, Torbjørn</au><au>Burud, Ingunn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral Characteristics and Spatial Distribution of Thermal Donors in n‐Type Czochralski‐Silicon Wafers</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2020-03</date><risdate>2020</risdate><volume>217</volume><issue>6</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>In monocrystalline silicon rich in oxygen, thermal donors are formed at temperatures around 450 °C. These are widely accepted to be electrically active oxygen clusters acting as double donors to the conduction band. Exposure to higher temperatures (650 °C) reportedly eliminates them. Herein, a systematic study of the spatial distribution of thermal donor formation and elimination by heat treatment at 450 and 650 °C in commercial n‐type Czochralski‐silicon wafers with high and low content of interstitial oxygen atoms are reported. Hyperspectral imaging techniques with spectral and spatial resolution are used. Thermal donors form at 450 °C in a ring‐like pattern, significantly enhanced in oxygen‐rich material. The results indicate the formation of at least six different donor clusters, leading to a strong, characteristic spectral response upon photoexcitation. The emission related to direct band‐to‐band recombination (1.100 eV) become systematically stronger upon heat treatment at 450 °C. Subsequent treatment at 650 °C rearrange the spectral response into a single, homogenously distributed, broadband emission with peak energy of 0.767 eV. The emission related to band‐to‐band recombination is significantly reduced. A previously studied emission at 0.807 eV (D1) commonly related to impurities is found, providing evidence that this signal is related to the combination of defects and oxygen. The study reports on the coupled spatial distribution and spectral characteristics of photoluminescence associated with thermal donor formation and elimination in commercial as‐cut n‐type Cz‐silicon wafers intended for use in solar cells. The results show a characteristic spectrum due to radiative recombination through traps in the bandgap with a set of individual peaks distributed as rings.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.201900884</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9721-1637</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2020-03, Vol.217 (6), p.n/a
issn 1862-6300
1862-6319
language eng
recordid cdi_proquest_journals_2379698667
source Wiley Online Library
subjects Broadband
Clusters
Conduction bands
Emission analysis
Heat treatment
Hyperspectral imaging
Imaging techniques
Oxygen atoms
Photoexcitation
recombination
Silicon
Silicon wafers
Spatial distribution
Spatial resolution
Spectra
Spectral sensitivity
spectroscopy
thermal donors
Wafers
title Spectral Characteristics and Spatial Distribution of Thermal Donors in n‐Type Czochralski‐Silicon Wafers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A47%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20Characteristics%20and%20Spatial%20Distribution%20of%20Thermal%20Donors%20in%20n%E2%80%90Type%20Czochralski%E2%80%90Silicon%20Wafers&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Olsen,%20Espen&rft.date=2020-03&rft.volume=217&rft.issue=6&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.201900884&rft_dat=%3Cproquest_cross%3E2379698667%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2379698667&rft_id=info:pmid/&rfr_iscdi=true