Neuro-fuzzy inference system based face recognition using feature extraction

Artificial neural networks (ANN) were used widely for constructing intelligent computer systems based on image processing and pattern recognition [4]. The proposed system consist of two stages: first stage face recognition by using NN and second stage is to evaluate the performance of the proposed a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Telkomnika 2020-02, Vol.18 (1), p.427-435
1. Verfasser: Abdullah, Hamsa A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 435
container_issue 1
container_start_page 427
container_title Telkomnika
container_volume 18
creator Abdullah, Hamsa A.
description Artificial neural networks (ANN) were used widely for constructing intelligent computer systems based on image processing and pattern recognition [4]. The proposed system consist of two stages: first stage face recognition by using NN and second stage is to evaluate the performance of the proposed algorithm with fuzzy system. 2.FACE RECOGNITION TECHNIQUES The main steps to face recognition are; extracting the features from the images, store features in data base, design NN, train feature on network, and test the old and new data NN. 2.1. In FL the idea of fractional truth has been used, where the range could be fully false and fully true. [...]a specific functions may be used to manage linguistic variable. In the first stage, the set of images are training to supply the data to network. [...]the designing structure of input required the identical row from the image matrix as shown in Figure 2.
doi_str_mv 10.12928/telkomnika.v18i1.12992
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2379529429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2379529429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1952-2202d4a96b5abba13b85580ee6416d906acf8b5ce669feaf94efa38ae5e71bc43</originalsourceid><addsrcrecordid>eNpFkFtLAzEQhYMoWGp_gwGft-ayyW4epXiDoi_6HJJ0UtLLpia7YvvrTVvBgWHgzDCH8yF0S8mUMsXa-x4267jtwtpMv2kb6FFW7AKNGCesUkzxSzSiUvGqNLlGk5xXpFRDmFDtCM3fYEix8sPhsMeh85Cgc4DzPvewxdZkWGBvipLAxWUX-hA7POTQLbEH0w8JMPz0ybjj4gZdebPJMPmbY_T59Pgxe6nm78-vs4d55agSrGKMsEVtlLTCWGsot60QLQGQNZULRaRxvrXCgZSqmHhVgze8NSCgodbVfIzuzn93KX4NkHu9ikPqiqVmvCkWqi7Bx6g5X7kUc07g9S6FrUl7TYk-0dP_9PSJnj7R47-I5GiV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2379529429</pqid></control><display><type>article</type><title>Neuro-fuzzy inference system based face recognition using feature extraction</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Abdullah, Hamsa A.</creator><creatorcontrib>Abdullah, Hamsa A.</creatorcontrib><description>Artificial neural networks (ANN) were used widely for constructing intelligent computer systems based on image processing and pattern recognition [4]. The proposed system consist of two stages: first stage face recognition by using NN and second stage is to evaluate the performance of the proposed algorithm with fuzzy system. 2.FACE RECOGNITION TECHNIQUES The main steps to face recognition are; extracting the features from the images, store features in data base, design NN, train feature on network, and test the old and new data NN. 2.1. In FL the idea of fractional truth has been used, where the range could be fully false and fully true. [...]a specific functions may be used to manage linguistic variable. In the first stage, the set of images are training to supply the data to network. [...]the designing structure of input required the identical row from the image matrix as shown in Figure 2.</description><identifier>ISSN: 1693-6930</identifier><identifier>EISSN: 2302-9293</identifier><identifier>DOI: 10.12928/telkomnika.v18i1.12992</identifier><language>eng</language><publisher>Yogyakarta: Ahmad Dahlan University</publisher><subject>Algorithms ; Artificial neural networks ; Back propagation ; Face recognition ; Feature extraction ; Feature recognition ; Fuzzy logic ; Fuzzy systems ; Image processing ; Methods ; Neural networks ; Object recognition ; Pattern recognition ; Principal components analysis ; Standard deviation</subject><ispartof>Telkomnika, 2020-02, Vol.18 (1), p.427-435</ispartof><rights>2020. This work is published under https://creativecommons.org/licenses/by/3.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Abdullah, Hamsa A.</creatorcontrib><title>Neuro-fuzzy inference system based face recognition using feature extraction</title><title>Telkomnika</title><description>Artificial neural networks (ANN) were used widely for constructing intelligent computer systems based on image processing and pattern recognition [4]. The proposed system consist of two stages: first stage face recognition by using NN and second stage is to evaluate the performance of the proposed algorithm with fuzzy system. 2.FACE RECOGNITION TECHNIQUES The main steps to face recognition are; extracting the features from the images, store features in data base, design NN, train feature on network, and test the old and new data NN. 2.1. In FL the idea of fractional truth has been used, where the range could be fully false and fully true. [...]a specific functions may be used to manage linguistic variable. In the first stage, the set of images are training to supply the data to network. [...]the designing structure of input required the identical row from the image matrix as shown in Figure 2.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Feature recognition</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Image processing</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Pattern recognition</subject><subject>Principal components analysis</subject><subject>Standard deviation</subject><issn>1693-6930</issn><issn>2302-9293</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpFkFtLAzEQhYMoWGp_gwGft-ayyW4epXiDoi_6HJJ0UtLLpia7YvvrTVvBgWHgzDCH8yF0S8mUMsXa-x4267jtwtpMv2kb6FFW7AKNGCesUkzxSzSiUvGqNLlGk5xXpFRDmFDtCM3fYEix8sPhsMeh85Cgc4DzPvewxdZkWGBvipLAxWUX-hA7POTQLbEH0w8JMPz0ybjj4gZdebPJMPmbY_T59Pgxe6nm78-vs4d55agSrGKMsEVtlLTCWGsot60QLQGQNZULRaRxvrXCgZSqmHhVgze8NSCgodbVfIzuzn93KX4NkHu9ikPqiqVmvCkWqi7Bx6g5X7kUc07g9S6FrUl7TYk-0dP_9PSJnj7R47-I5GiV</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Abdullah, Hamsa A.</creator><general>Ahmad Dahlan University</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20200201</creationdate><title>Neuro-fuzzy inference system based face recognition using feature extraction</title><author>Abdullah, Hamsa A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1952-2202d4a96b5abba13b85580ee6416d906acf8b5ce669feaf94efa38ae5e71bc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Feature recognition</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Image processing</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Pattern recognition</topic><topic>Principal components analysis</topic><topic>Standard deviation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdullah, Hamsa A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East &amp; South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Telkomnika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdullah, Hamsa A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuro-fuzzy inference system based face recognition using feature extraction</atitle><jtitle>Telkomnika</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>18</volume><issue>1</issue><spage>427</spage><epage>435</epage><pages>427-435</pages><issn>1693-6930</issn><eissn>2302-9293</eissn><abstract>Artificial neural networks (ANN) were used widely for constructing intelligent computer systems based on image processing and pattern recognition [4]. The proposed system consist of two stages: first stage face recognition by using NN and second stage is to evaluate the performance of the proposed algorithm with fuzzy system. 2.FACE RECOGNITION TECHNIQUES The main steps to face recognition are; extracting the features from the images, store features in data base, design NN, train feature on network, and test the old and new data NN. 2.1. In FL the idea of fractional truth has been used, where the range could be fully false and fully true. [...]a specific functions may be used to manage linguistic variable. In the first stage, the set of images are training to supply the data to network. [...]the designing structure of input required the identical row from the image matrix as shown in Figure 2.</abstract><cop>Yogyakarta</cop><pub>Ahmad Dahlan University</pub><doi>10.12928/telkomnika.v18i1.12992</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1693-6930
ispartof Telkomnika, 2020-02, Vol.18 (1), p.427-435
issn 1693-6930
2302-9293
language eng
recordid cdi_proquest_journals_2379529429
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Artificial neural networks
Back propagation
Face recognition
Feature extraction
Feature recognition
Fuzzy logic
Fuzzy systems
Image processing
Methods
Neural networks
Object recognition
Pattern recognition
Principal components analysis
Standard deviation
title Neuro-fuzzy inference system based face recognition using feature extraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A30%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuro-fuzzy%20inference%20system%20based%20face%20recognition%20using%20feature%20extraction&rft.jtitle=Telkomnika&rft.au=Abdullah,%20Hamsa%20A.&rft.date=2020-02-01&rft.volume=18&rft.issue=1&rft.spage=427&rft.epage=435&rft.pages=427-435&rft.issn=1693-6930&rft.eissn=2302-9293&rft_id=info:doi/10.12928/telkomnika.v18i1.12992&rft_dat=%3Cproquest_cross%3E2379529429%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2379529429&rft_id=info:pmid/&rfr_iscdi=true