Electronically tunable auxetic behavior of shunted piezoelectric elements

This work demonstrates auxetic behavior in a solid polycrystalline shunted piezoelectric cube. Piezoelectric elements are commonly bonded to structures to reduce vibrations by tuning an attached shunt circuit to resonate at the same frequency as the mechanical vibrations in the structure. Literature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanics and physics of solids 2020-04, Vol.137, p.103873, Article 103873
Hauptverfasser: Willey, C.L., Buskohl, P.R., Juhl, A.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 103873
container_title Journal of the mechanics and physics of solids
container_volume 137
creator Willey, C.L.
Buskohl, P.R.
Juhl, A.T.
description This work demonstrates auxetic behavior in a solid polycrystalline shunted piezoelectric cube. Piezoelectric elements are commonly bonded to structures to reduce vibrations by tuning an attached shunt circuit to resonate at the same frequency as the mechanical vibrations in the structure. Literature has provided an extensive analysis of vibration suppression in passively shunted piezoelectric systems, but in practice, the three-dimensional constitutive equations are almost always reduced to one-dimensional stresses and strains within the piezoelectric. In this work, resistive–inductive shunt circuits are applied to the electrical terminals of a harmonically forced piezoelectric cube, and the directional displacements are determined in all three dimensions when it is loaded parallel and perpendicular to the poling direction, as well as dilatationally. By comparing these directional displacements, the effect of the shunt circuit on Poisson’s ratio can be measured. It is demonstrated that an inductive shunt leads to a complex Poisson’s ratio with a real part approaching positive and negative infinity over a discrete band of frequencies, implying that a polycrystalline piezoelectric cube can become auxetic through the application of a properly engineered shunt circuit. The auxetic behavior is explored through finite element modeling, and the derivation of analytical expressions for Poisson’s ratio in shunted piezoelectric elements.
doi_str_mv 10.1016/j.jmps.2020.103873
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2378993317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022509619301413</els_id><sourcerecordid>2378993317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-e723545037acdaadbadbb4e8268c7e9e3f61d926dbbb45829b16047b5d709fc13</originalsourceid><addsrcrecordid>eNp9UMtKw0AUHUTBWv0BVwHXqfNIMgm4kVJroeBG18M8buiENBNnkmL9eifGtXDhXA7n3MdB6J7gFcGkeGxWzbEPK4rpRLCSswu0IBHSjJf0Ei0wpjTNcVVco5sQGoxxjjlZoN2mBT1411kt2_acDGMnVQuJHL9gsDpRcJAn63zi6iQcxm4Ak_QWvh38-qIiNkfohnCLrmrZBrj7wyX6eNm8r1_T_dt2t37ep5pxOqTAKcuzHDMutZHSqFgqg5IWpeZQAasLYipaRFZleUkrRQqccZUbjqtaE7ZED_Pc3rvPEcIgGjf6Lq4UlPGyqhgjPKrorNLeheChFr23R-nPgmAxRSYaMUUmpsjEHFk0Pc0miPefLHgRtIVOg7E-fiuMs__ZfwC5HHX_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2378993317</pqid></control><display><type>article</type><title>Electronically tunable auxetic behavior of shunted piezoelectric elements</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Willey, C.L. ; Buskohl, P.R. ; Juhl, A.T.</creator><creatorcontrib>Willey, C.L. ; Buskohl, P.R. ; Juhl, A.T.</creatorcontrib><description>This work demonstrates auxetic behavior in a solid polycrystalline shunted piezoelectric cube. Piezoelectric elements are commonly bonded to structures to reduce vibrations by tuning an attached shunt circuit to resonate at the same frequency as the mechanical vibrations in the structure. Literature has provided an extensive analysis of vibration suppression in passively shunted piezoelectric systems, but in practice, the three-dimensional constitutive equations are almost always reduced to one-dimensional stresses and strains within the piezoelectric. In this work, resistive–inductive shunt circuits are applied to the electrical terminals of a harmonically forced piezoelectric cube, and the directional displacements are determined in all three dimensions when it is loaded parallel and perpendicular to the poling direction, as well as dilatationally. By comparing these directional displacements, the effect of the shunt circuit on Poisson’s ratio can be measured. It is demonstrated that an inductive shunt leads to a complex Poisson’s ratio with a real part approaching positive and negative infinity over a discrete band of frequencies, implying that a polycrystalline piezoelectric cube can become auxetic through the application of a properly engineered shunt circuit. The auxetic behavior is explored through finite element modeling, and the derivation of analytical expressions for Poisson’s ratio in shunted piezoelectric elements.</description><identifier>ISSN: 0022-5096</identifier><identifier>EISSN: 1873-4782</identifier><identifier>DOI: 10.1016/j.jmps.2020.103873</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Auxetic ; Circuits ; Constitutive equations ; Constitutive relationships ; Deoxidizing ; Finite element method ; Mathematical analysis ; Piezoelectric ; Piezoelectricity ; Poisson's ratio ; Polycrystals ; Shunt circuit ; Vibration analysis ; Vibration control</subject><ispartof>Journal of the mechanics and physics of solids, 2020-04, Vol.137, p.103873, Article 103873</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Apr 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-e723545037acdaadbadbb4e8268c7e9e3f61d926dbbb45829b16047b5d709fc13</citedby><cites>FETCH-LOGICAL-c372t-e723545037acdaadbadbb4e8268c7e9e3f61d926dbbb45829b16047b5d709fc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmps.2020.103873$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Willey, C.L.</creatorcontrib><creatorcontrib>Buskohl, P.R.</creatorcontrib><creatorcontrib>Juhl, A.T.</creatorcontrib><title>Electronically tunable auxetic behavior of shunted piezoelectric elements</title><title>Journal of the mechanics and physics of solids</title><description>This work demonstrates auxetic behavior in a solid polycrystalline shunted piezoelectric cube. Piezoelectric elements are commonly bonded to structures to reduce vibrations by tuning an attached shunt circuit to resonate at the same frequency as the mechanical vibrations in the structure. Literature has provided an extensive analysis of vibration suppression in passively shunted piezoelectric systems, but in practice, the three-dimensional constitutive equations are almost always reduced to one-dimensional stresses and strains within the piezoelectric. In this work, resistive–inductive shunt circuits are applied to the electrical terminals of a harmonically forced piezoelectric cube, and the directional displacements are determined in all three dimensions when it is loaded parallel and perpendicular to the poling direction, as well as dilatationally. By comparing these directional displacements, the effect of the shunt circuit on Poisson’s ratio can be measured. It is demonstrated that an inductive shunt leads to a complex Poisson’s ratio with a real part approaching positive and negative infinity over a discrete band of frequencies, implying that a polycrystalline piezoelectric cube can become auxetic through the application of a properly engineered shunt circuit. The auxetic behavior is explored through finite element modeling, and the derivation of analytical expressions for Poisson’s ratio in shunted piezoelectric elements.</description><subject>Auxetic</subject><subject>Circuits</subject><subject>Constitutive equations</subject><subject>Constitutive relationships</subject><subject>Deoxidizing</subject><subject>Finite element method</subject><subject>Mathematical analysis</subject><subject>Piezoelectric</subject><subject>Piezoelectricity</subject><subject>Poisson's ratio</subject><subject>Polycrystals</subject><subject>Shunt circuit</subject><subject>Vibration analysis</subject><subject>Vibration control</subject><issn>0022-5096</issn><issn>1873-4782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKw0AUHUTBWv0BVwHXqfNIMgm4kVJroeBG18M8buiENBNnkmL9eifGtXDhXA7n3MdB6J7gFcGkeGxWzbEPK4rpRLCSswu0IBHSjJf0Ei0wpjTNcVVco5sQGoxxjjlZoN2mBT1411kt2_acDGMnVQuJHL9gsDpRcJAn63zi6iQcxm4Ak_QWvh38-qIiNkfohnCLrmrZBrj7wyX6eNm8r1_T_dt2t37ep5pxOqTAKcuzHDMutZHSqFgqg5IWpeZQAasLYipaRFZleUkrRQqccZUbjqtaE7ZED_Pc3rvPEcIgGjf6Lq4UlPGyqhgjPKrorNLeheChFr23R-nPgmAxRSYaMUUmpsjEHFk0Pc0miPefLHgRtIVOg7E-fiuMs__ZfwC5HHX_</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Willey, C.L.</creator><creator>Buskohl, P.R.</creator><creator>Juhl, A.T.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>202004</creationdate><title>Electronically tunable auxetic behavior of shunted piezoelectric elements</title><author>Willey, C.L. ; Buskohl, P.R. ; Juhl, A.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-e723545037acdaadbadbb4e8268c7e9e3f61d926dbbb45829b16047b5d709fc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Auxetic</topic><topic>Circuits</topic><topic>Constitutive equations</topic><topic>Constitutive relationships</topic><topic>Deoxidizing</topic><topic>Finite element method</topic><topic>Mathematical analysis</topic><topic>Piezoelectric</topic><topic>Piezoelectricity</topic><topic>Poisson's ratio</topic><topic>Polycrystals</topic><topic>Shunt circuit</topic><topic>Vibration analysis</topic><topic>Vibration control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Willey, C.L.</creatorcontrib><creatorcontrib>Buskohl, P.R.</creatorcontrib><creatorcontrib>Juhl, A.T.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the mechanics and physics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Willey, C.L.</au><au>Buskohl, P.R.</au><au>Juhl, A.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronically tunable auxetic behavior of shunted piezoelectric elements</atitle><jtitle>Journal of the mechanics and physics of solids</jtitle><date>2020-04</date><risdate>2020</risdate><volume>137</volume><spage>103873</spage><pages>103873-</pages><artnum>103873</artnum><issn>0022-5096</issn><eissn>1873-4782</eissn><abstract>This work demonstrates auxetic behavior in a solid polycrystalline shunted piezoelectric cube. Piezoelectric elements are commonly bonded to structures to reduce vibrations by tuning an attached shunt circuit to resonate at the same frequency as the mechanical vibrations in the structure. Literature has provided an extensive analysis of vibration suppression in passively shunted piezoelectric systems, but in practice, the three-dimensional constitutive equations are almost always reduced to one-dimensional stresses and strains within the piezoelectric. In this work, resistive–inductive shunt circuits are applied to the electrical terminals of a harmonically forced piezoelectric cube, and the directional displacements are determined in all three dimensions when it is loaded parallel and perpendicular to the poling direction, as well as dilatationally. By comparing these directional displacements, the effect of the shunt circuit on Poisson’s ratio can be measured. It is demonstrated that an inductive shunt leads to a complex Poisson’s ratio with a real part approaching positive and negative infinity over a discrete band of frequencies, implying that a polycrystalline piezoelectric cube can become auxetic through the application of a properly engineered shunt circuit. The auxetic behavior is explored through finite element modeling, and the derivation of analytical expressions for Poisson’s ratio in shunted piezoelectric elements.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jmps.2020.103873</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-5096
ispartof Journal of the mechanics and physics of solids, 2020-04, Vol.137, p.103873, Article 103873
issn 0022-5096
1873-4782
language eng
recordid cdi_proquest_journals_2378993317
source Elsevier ScienceDirect Journals Complete
subjects Auxetic
Circuits
Constitutive equations
Constitutive relationships
Deoxidizing
Finite element method
Mathematical analysis
Piezoelectric
Piezoelectricity
Poisson's ratio
Polycrystals
Shunt circuit
Vibration analysis
Vibration control
title Electronically tunable auxetic behavior of shunted piezoelectric elements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A39%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronically%20tunable%20auxetic%20behavior%20of%20shunted%20piezoelectric%20elements&rft.jtitle=Journal%20of%20the%20mechanics%20and%20physics%20of%20solids&rft.au=Willey,%20C.L.&rft.date=2020-04&rft.volume=137&rft.spage=103873&rft.pages=103873-&rft.artnum=103873&rft.issn=0022-5096&rft.eissn=1873-4782&rft_id=info:doi/10.1016/j.jmps.2020.103873&rft_dat=%3Cproquest_cross%3E2378993317%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2378993317&rft_id=info:pmid/&rft_els_id=S0022509619301413&rfr_iscdi=true