Nano-cones enhanced superhydrophobic fluid-resistance reduction and thermal isolation properties of flexible pipeline
Thermal-fluid transport in the pipeline is an essential process in the application of chemical industry, biology and microfluidic chip. Conventional fluid transport in the pipeline generates much energy loss by hysteresis and heat transfer at the solid/liquid interface, which has become the most sig...
Gespeichert in:
Veröffentlicht in: | Heat and mass transfer 2020-04, Vol.56 (4), p.1077-1086 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1086 |
---|---|
container_issue | 4 |
container_start_page | 1077 |
container_title | Heat and mass transfer |
container_volume | 56 |
creator | An, Qier Zhang, Bo Zhou, Xuyan Li, Conghui Wang, Jinshu Wang, Lei |
description | Thermal-fluid transport in the pipeline is an essential process in the application of chemical industry, biology and microfluidic chip. Conventional fluid transport in the pipeline generates much energy loss by hysteresis and heat transfer at the solid/liquid interface, which has become the most significant issue for the applications of novel energy-efficient equipments. Here, we demonstrate a flexible superhydrophobic pipeline with fluid-resistance reduction and thermal isolation properties. Liquid metal as buffer material enhances the bonding strength between flexible pipeline and nano-structures, providing much more pocketed air between solid/liquid interface, which enhances the water repellency of inwall surface and declines the interfacial heat transfer efficiency. These research highlights the potential applications of superhydrophobic functional materials in the field of energy conservation and environment protection. |
doi_str_mv | 10.1007/s00231-019-02748-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2378943978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2378943978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-70dff026d83c2406cf2b5a31b66ec3b8bfa8aa0ab1d16d2e29b7fb467b1d999e3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4GrAdTSX6WRmKcUbFN3oOuRyYlOmyZjMgH1701Zw5-rA4fv-c_gRuqbklhIi7jIhjFNMaIcJE3WL6Qma0ZozTGlLT9GMdLXAoqb0HF3kvCl4UzM-Q9OrChGbGCBXENYqGLBVngZI651NcVhH7U3l-slbnCD7PO6RKoGdzOhjqFSw1biGtFV95XPs1WE7FBXS6EtqdEWHb697qAY_QO8DXKIzp_oMV79zjj4eH96Xz3j19vSyvF9hwxfNiAWxzpVPbcsNq0ljHNMLxaluGjBct9qpVimiNLW0sQxYp4XTdSPKous64HN0c8wt_3xNkEe5iVMK5aRkXLRdzTvRFoodKZNizgmcHJLfqrSTlMh9vfJYryz1ykO9khaJH6Vc4PAJ6S_6H-sH8JSBDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2378943978</pqid></control><display><type>article</type><title>Nano-cones enhanced superhydrophobic fluid-resistance reduction and thermal isolation properties of flexible pipeline</title><source>SpringerNature Journals</source><creator>An, Qier ; Zhang, Bo ; Zhou, Xuyan ; Li, Conghui ; Wang, Jinshu ; Wang, Lei</creator><creatorcontrib>An, Qier ; Zhang, Bo ; Zhou, Xuyan ; Li, Conghui ; Wang, Jinshu ; Wang, Lei</creatorcontrib><description>Thermal-fluid transport in the pipeline is an essential process in the application of chemical industry, biology and microfluidic chip. Conventional fluid transport in the pipeline generates much energy loss by hysteresis and heat transfer at the solid/liquid interface, which has become the most significant issue for the applications of novel energy-efficient equipments. Here, we demonstrate a flexible superhydrophobic pipeline with fluid-resistance reduction and thermal isolation properties. Liquid metal as buffer material enhances the bonding strength between flexible pipeline and nano-structures, providing much more pocketed air between solid/liquid interface, which enhances the water repellency of inwall surface and declines the interfacial heat transfer efficiency. These research highlights the potential applications of superhydrophobic functional materials in the field of energy conservation and environment protection.</description><identifier>ISSN: 0947-7411</identifier><identifier>EISSN: 1432-1181</identifier><identifier>DOI: 10.1007/s00231-019-02748-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bonding strength ; Chemical industry ; Cones ; Energy conservation ; Energy dissipation ; Engineering ; Engineering Thermodynamics ; Environmental protection ; Functional materials ; Heat and Mass Transfer ; Heat transfer ; Hydrophobic surfaces ; Hydrophobicity ; Industrial Chemistry/Chemical Engineering ; Liquid metals ; Microfluidics ; Original ; Thermal resistance ; Thermodynamics ; Transport</subject><ispartof>Heat and mass transfer, 2020-04, Vol.56 (4), p.1077-1086</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>2019© Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-70dff026d83c2406cf2b5a31b66ec3b8bfa8aa0ab1d16d2e29b7fb467b1d999e3</citedby><cites>FETCH-LOGICAL-c356t-70dff026d83c2406cf2b5a31b66ec3b8bfa8aa0ab1d16d2e29b7fb467b1d999e3</cites><orcidid>0000-0001-6674-1205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00231-019-02748-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00231-019-02748-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>An, Qier</creatorcontrib><creatorcontrib>Zhang, Bo</creatorcontrib><creatorcontrib>Zhou, Xuyan</creatorcontrib><creatorcontrib>Li, Conghui</creatorcontrib><creatorcontrib>Wang, Jinshu</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><title>Nano-cones enhanced superhydrophobic fluid-resistance reduction and thermal isolation properties of flexible pipeline</title><title>Heat and mass transfer</title><addtitle>Heat Mass Transfer</addtitle><description>Thermal-fluid transport in the pipeline is an essential process in the application of chemical industry, biology and microfluidic chip. Conventional fluid transport in the pipeline generates much energy loss by hysteresis and heat transfer at the solid/liquid interface, which has become the most significant issue for the applications of novel energy-efficient equipments. Here, we demonstrate a flexible superhydrophobic pipeline with fluid-resistance reduction and thermal isolation properties. Liquid metal as buffer material enhances the bonding strength between flexible pipeline and nano-structures, providing much more pocketed air between solid/liquid interface, which enhances the water repellency of inwall surface and declines the interfacial heat transfer efficiency. These research highlights the potential applications of superhydrophobic functional materials in the field of energy conservation and environment protection.</description><subject>Bonding strength</subject><subject>Chemical industry</subject><subject>Cones</subject><subject>Energy conservation</subject><subject>Energy dissipation</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Environmental protection</subject><subject>Functional materials</subject><subject>Heat and Mass Transfer</subject><subject>Heat transfer</subject><subject>Hydrophobic surfaces</subject><subject>Hydrophobicity</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Liquid metals</subject><subject>Microfluidics</subject><subject>Original</subject><subject>Thermal resistance</subject><subject>Thermodynamics</subject><subject>Transport</subject><issn>0947-7411</issn><issn>1432-1181</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4GrAdTSX6WRmKcUbFN3oOuRyYlOmyZjMgH1701Zw5-rA4fv-c_gRuqbklhIi7jIhjFNMaIcJE3WL6Qma0ZozTGlLT9GMdLXAoqb0HF3kvCl4UzM-Q9OrChGbGCBXENYqGLBVngZI651NcVhH7U3l-slbnCD7PO6RKoGdzOhjqFSw1biGtFV95XPs1WE7FBXS6EtqdEWHb697qAY_QO8DXKIzp_oMV79zjj4eH96Xz3j19vSyvF9hwxfNiAWxzpVPbcsNq0ljHNMLxaluGjBct9qpVimiNLW0sQxYp4XTdSPKous64HN0c8wt_3xNkEe5iVMK5aRkXLRdzTvRFoodKZNizgmcHJLfqrSTlMh9vfJYryz1ykO9khaJH6Vc4PAJ6S_6H-sH8JSBDw</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>An, Qier</creator><creator>Zhang, Bo</creator><creator>Zhou, Xuyan</creator><creator>Li, Conghui</creator><creator>Wang, Jinshu</creator><creator>Wang, Lei</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6674-1205</orcidid></search><sort><creationdate>20200401</creationdate><title>Nano-cones enhanced superhydrophobic fluid-resistance reduction and thermal isolation properties of flexible pipeline</title><author>An, Qier ; Zhang, Bo ; Zhou, Xuyan ; Li, Conghui ; Wang, Jinshu ; Wang, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-70dff026d83c2406cf2b5a31b66ec3b8bfa8aa0ab1d16d2e29b7fb467b1d999e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bonding strength</topic><topic>Chemical industry</topic><topic>Cones</topic><topic>Energy conservation</topic><topic>Energy dissipation</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Environmental protection</topic><topic>Functional materials</topic><topic>Heat and Mass Transfer</topic><topic>Heat transfer</topic><topic>Hydrophobic surfaces</topic><topic>Hydrophobicity</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Liquid metals</topic><topic>Microfluidics</topic><topic>Original</topic><topic>Thermal resistance</topic><topic>Thermodynamics</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Qier</creatorcontrib><creatorcontrib>Zhang, Bo</creatorcontrib><creatorcontrib>Zhou, Xuyan</creatorcontrib><creatorcontrib>Li, Conghui</creatorcontrib><creatorcontrib>Wang, Jinshu</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><collection>CrossRef</collection><jtitle>Heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Qier</au><au>Zhang, Bo</au><au>Zhou, Xuyan</au><au>Li, Conghui</au><au>Wang, Jinshu</au><au>Wang, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nano-cones enhanced superhydrophobic fluid-resistance reduction and thermal isolation properties of flexible pipeline</atitle><jtitle>Heat and mass transfer</jtitle><stitle>Heat Mass Transfer</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>56</volume><issue>4</issue><spage>1077</spage><epage>1086</epage><pages>1077-1086</pages><issn>0947-7411</issn><eissn>1432-1181</eissn><abstract>Thermal-fluid transport in the pipeline is an essential process in the application of chemical industry, biology and microfluidic chip. Conventional fluid transport in the pipeline generates much energy loss by hysteresis and heat transfer at the solid/liquid interface, which has become the most significant issue for the applications of novel energy-efficient equipments. Here, we demonstrate a flexible superhydrophobic pipeline with fluid-resistance reduction and thermal isolation properties. Liquid metal as buffer material enhances the bonding strength between flexible pipeline and nano-structures, providing much more pocketed air between solid/liquid interface, which enhances the water repellency of inwall surface and declines the interfacial heat transfer efficiency. These research highlights the potential applications of superhydrophobic functional materials in the field of energy conservation and environment protection.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00231-019-02748-1</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6674-1205</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-7411 |
ispartof | Heat and mass transfer, 2020-04, Vol.56 (4), p.1077-1086 |
issn | 0947-7411 1432-1181 |
language | eng |
recordid | cdi_proquest_journals_2378943978 |
source | SpringerNature Journals |
subjects | Bonding strength Chemical industry Cones Energy conservation Energy dissipation Engineering Engineering Thermodynamics Environmental protection Functional materials Heat and Mass Transfer Heat transfer Hydrophobic surfaces Hydrophobicity Industrial Chemistry/Chemical Engineering Liquid metals Microfluidics Original Thermal resistance Thermodynamics Transport |
title | Nano-cones enhanced superhydrophobic fluid-resistance reduction and thermal isolation properties of flexible pipeline |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A15%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nano-cones%20enhanced%20superhydrophobic%20fluid-resistance%20reduction%20and%20thermal%20isolation%20properties%20of%20flexible%20pipeline&rft.jtitle=Heat%20and%20mass%20transfer&rft.au=An,%20Qier&rft.date=2020-04-01&rft.volume=56&rft.issue=4&rft.spage=1077&rft.epage=1086&rft.pages=1077-1086&rft.issn=0947-7411&rft.eissn=1432-1181&rft_id=info:doi/10.1007/s00231-019-02748-1&rft_dat=%3Cproquest_cross%3E2378943978%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2378943978&rft_id=info:pmid/&rfr_iscdi=true |