Nano-cones enhanced superhydrophobic fluid-resistance reduction and thermal isolation properties of flexible pipeline

Thermal-fluid transport in the pipeline is an essential process in the application of chemical industry, biology and microfluidic chip. Conventional fluid transport in the pipeline generates much energy loss by hysteresis and heat transfer at the solid/liquid interface, which has become the most sig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heat and mass transfer 2020-04, Vol.56 (4), p.1077-1086
Hauptverfasser: An, Qier, Zhang, Bo, Zhou, Xuyan, Li, Conghui, Wang, Jinshu, Wang, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1086
container_issue 4
container_start_page 1077
container_title Heat and mass transfer
container_volume 56
creator An, Qier
Zhang, Bo
Zhou, Xuyan
Li, Conghui
Wang, Jinshu
Wang, Lei
description Thermal-fluid transport in the pipeline is an essential process in the application of chemical industry, biology and microfluidic chip. Conventional fluid transport in the pipeline generates much energy loss by hysteresis and heat transfer at the solid/liquid interface, which has become the most significant issue for the applications of novel energy-efficient equipments. Here, we demonstrate a flexible superhydrophobic pipeline with fluid-resistance reduction and thermal isolation properties. Liquid metal as buffer material enhances the bonding strength between flexible pipeline and nano-structures, providing much more pocketed air between solid/liquid interface, which enhances the water repellency of inwall surface and declines the interfacial heat transfer efficiency. These research highlights the potential applications of superhydrophobic functional materials in the field of energy conservation and environment protection.
doi_str_mv 10.1007/s00231-019-02748-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2378943978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2378943978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-70dff026d83c2406cf2b5a31b66ec3b8bfa8aa0ab1d16d2e29b7fb467b1d999e3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4GrAdTSX6WRmKcUbFN3oOuRyYlOmyZjMgH1701Zw5-rA4fv-c_gRuqbklhIi7jIhjFNMaIcJE3WL6Qma0ZozTGlLT9GMdLXAoqb0HF3kvCl4UzM-Q9OrChGbGCBXENYqGLBVngZI651NcVhH7U3l-slbnCD7PO6RKoGdzOhjqFSw1biGtFV95XPs1WE7FBXS6EtqdEWHb697qAY_QO8DXKIzp_oMV79zjj4eH96Xz3j19vSyvF9hwxfNiAWxzpVPbcsNq0ljHNMLxaluGjBct9qpVimiNLW0sQxYp4XTdSPKous64HN0c8wt_3xNkEe5iVMK5aRkXLRdzTvRFoodKZNizgmcHJLfqrSTlMh9vfJYryz1ykO9khaJH6Vc4PAJ6S_6H-sH8JSBDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2378943978</pqid></control><display><type>article</type><title>Nano-cones enhanced superhydrophobic fluid-resistance reduction and thermal isolation properties of flexible pipeline</title><source>SpringerNature Journals</source><creator>An, Qier ; Zhang, Bo ; Zhou, Xuyan ; Li, Conghui ; Wang, Jinshu ; Wang, Lei</creator><creatorcontrib>An, Qier ; Zhang, Bo ; Zhou, Xuyan ; Li, Conghui ; Wang, Jinshu ; Wang, Lei</creatorcontrib><description>Thermal-fluid transport in the pipeline is an essential process in the application of chemical industry, biology and microfluidic chip. Conventional fluid transport in the pipeline generates much energy loss by hysteresis and heat transfer at the solid/liquid interface, which has become the most significant issue for the applications of novel energy-efficient equipments. Here, we demonstrate a flexible superhydrophobic pipeline with fluid-resistance reduction and thermal isolation properties. Liquid metal as buffer material enhances the bonding strength between flexible pipeline and nano-structures, providing much more pocketed air between solid/liquid interface, which enhances the water repellency of inwall surface and declines the interfacial heat transfer efficiency. These research highlights the potential applications of superhydrophobic functional materials in the field of energy conservation and environment protection.</description><identifier>ISSN: 0947-7411</identifier><identifier>EISSN: 1432-1181</identifier><identifier>DOI: 10.1007/s00231-019-02748-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bonding strength ; Chemical industry ; Cones ; Energy conservation ; Energy dissipation ; Engineering ; Engineering Thermodynamics ; Environmental protection ; Functional materials ; Heat and Mass Transfer ; Heat transfer ; Hydrophobic surfaces ; Hydrophobicity ; Industrial Chemistry/Chemical Engineering ; Liquid metals ; Microfluidics ; Original ; Thermal resistance ; Thermodynamics ; Transport</subject><ispartof>Heat and mass transfer, 2020-04, Vol.56 (4), p.1077-1086</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>2019© Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-70dff026d83c2406cf2b5a31b66ec3b8bfa8aa0ab1d16d2e29b7fb467b1d999e3</citedby><cites>FETCH-LOGICAL-c356t-70dff026d83c2406cf2b5a31b66ec3b8bfa8aa0ab1d16d2e29b7fb467b1d999e3</cites><orcidid>0000-0001-6674-1205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00231-019-02748-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00231-019-02748-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>An, Qier</creatorcontrib><creatorcontrib>Zhang, Bo</creatorcontrib><creatorcontrib>Zhou, Xuyan</creatorcontrib><creatorcontrib>Li, Conghui</creatorcontrib><creatorcontrib>Wang, Jinshu</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><title>Nano-cones enhanced superhydrophobic fluid-resistance reduction and thermal isolation properties of flexible pipeline</title><title>Heat and mass transfer</title><addtitle>Heat Mass Transfer</addtitle><description>Thermal-fluid transport in the pipeline is an essential process in the application of chemical industry, biology and microfluidic chip. Conventional fluid transport in the pipeline generates much energy loss by hysteresis and heat transfer at the solid/liquid interface, which has become the most significant issue for the applications of novel energy-efficient equipments. Here, we demonstrate a flexible superhydrophobic pipeline with fluid-resistance reduction and thermal isolation properties. Liquid metal as buffer material enhances the bonding strength between flexible pipeline and nano-structures, providing much more pocketed air between solid/liquid interface, which enhances the water repellency of inwall surface and declines the interfacial heat transfer efficiency. These research highlights the potential applications of superhydrophobic functional materials in the field of energy conservation and environment protection.</description><subject>Bonding strength</subject><subject>Chemical industry</subject><subject>Cones</subject><subject>Energy conservation</subject><subject>Energy dissipation</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Environmental protection</subject><subject>Functional materials</subject><subject>Heat and Mass Transfer</subject><subject>Heat transfer</subject><subject>Hydrophobic surfaces</subject><subject>Hydrophobicity</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Liquid metals</subject><subject>Microfluidics</subject><subject>Original</subject><subject>Thermal resistance</subject><subject>Thermodynamics</subject><subject>Transport</subject><issn>0947-7411</issn><issn>1432-1181</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4GrAdTSX6WRmKcUbFN3oOuRyYlOmyZjMgH1701Zw5-rA4fv-c_gRuqbklhIi7jIhjFNMaIcJE3WL6Qma0ZozTGlLT9GMdLXAoqb0HF3kvCl4UzM-Q9OrChGbGCBXENYqGLBVngZI651NcVhH7U3l-slbnCD7PO6RKoGdzOhjqFSw1biGtFV95XPs1WE7FBXS6EtqdEWHb697qAY_QO8DXKIzp_oMV79zjj4eH96Xz3j19vSyvF9hwxfNiAWxzpVPbcsNq0ljHNMLxaluGjBct9qpVimiNLW0sQxYp4XTdSPKous64HN0c8wt_3xNkEe5iVMK5aRkXLRdzTvRFoodKZNizgmcHJLfqrSTlMh9vfJYryz1ykO9khaJH6Vc4PAJ6S_6H-sH8JSBDw</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>An, Qier</creator><creator>Zhang, Bo</creator><creator>Zhou, Xuyan</creator><creator>Li, Conghui</creator><creator>Wang, Jinshu</creator><creator>Wang, Lei</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6674-1205</orcidid></search><sort><creationdate>20200401</creationdate><title>Nano-cones enhanced superhydrophobic fluid-resistance reduction and thermal isolation properties of flexible pipeline</title><author>An, Qier ; Zhang, Bo ; Zhou, Xuyan ; Li, Conghui ; Wang, Jinshu ; Wang, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-70dff026d83c2406cf2b5a31b66ec3b8bfa8aa0ab1d16d2e29b7fb467b1d999e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bonding strength</topic><topic>Chemical industry</topic><topic>Cones</topic><topic>Energy conservation</topic><topic>Energy dissipation</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Environmental protection</topic><topic>Functional materials</topic><topic>Heat and Mass Transfer</topic><topic>Heat transfer</topic><topic>Hydrophobic surfaces</topic><topic>Hydrophobicity</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Liquid metals</topic><topic>Microfluidics</topic><topic>Original</topic><topic>Thermal resistance</topic><topic>Thermodynamics</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Qier</creatorcontrib><creatorcontrib>Zhang, Bo</creatorcontrib><creatorcontrib>Zhou, Xuyan</creatorcontrib><creatorcontrib>Li, Conghui</creatorcontrib><creatorcontrib>Wang, Jinshu</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><collection>CrossRef</collection><jtitle>Heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Qier</au><au>Zhang, Bo</au><au>Zhou, Xuyan</au><au>Li, Conghui</au><au>Wang, Jinshu</au><au>Wang, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nano-cones enhanced superhydrophobic fluid-resistance reduction and thermal isolation properties of flexible pipeline</atitle><jtitle>Heat and mass transfer</jtitle><stitle>Heat Mass Transfer</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>56</volume><issue>4</issue><spage>1077</spage><epage>1086</epage><pages>1077-1086</pages><issn>0947-7411</issn><eissn>1432-1181</eissn><abstract>Thermal-fluid transport in the pipeline is an essential process in the application of chemical industry, biology and microfluidic chip. Conventional fluid transport in the pipeline generates much energy loss by hysteresis and heat transfer at the solid/liquid interface, which has become the most significant issue for the applications of novel energy-efficient equipments. Here, we demonstrate a flexible superhydrophobic pipeline with fluid-resistance reduction and thermal isolation properties. Liquid metal as buffer material enhances the bonding strength between flexible pipeline and nano-structures, providing much more pocketed air between solid/liquid interface, which enhances the water repellency of inwall surface and declines the interfacial heat transfer efficiency. These research highlights the potential applications of superhydrophobic functional materials in the field of energy conservation and environment protection.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00231-019-02748-1</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6674-1205</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-7411
ispartof Heat and mass transfer, 2020-04, Vol.56 (4), p.1077-1086
issn 0947-7411
1432-1181
language eng
recordid cdi_proquest_journals_2378943978
source SpringerNature Journals
subjects Bonding strength
Chemical industry
Cones
Energy conservation
Energy dissipation
Engineering
Engineering Thermodynamics
Environmental protection
Functional materials
Heat and Mass Transfer
Heat transfer
Hydrophobic surfaces
Hydrophobicity
Industrial Chemistry/Chemical Engineering
Liquid metals
Microfluidics
Original
Thermal resistance
Thermodynamics
Transport
title Nano-cones enhanced superhydrophobic fluid-resistance reduction and thermal isolation properties of flexible pipeline
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A15%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nano-cones%20enhanced%20superhydrophobic%20fluid-resistance%20reduction%20and%20thermal%20isolation%20properties%20of%20flexible%20pipeline&rft.jtitle=Heat%20and%20mass%20transfer&rft.au=An,%20Qier&rft.date=2020-04-01&rft.volume=56&rft.issue=4&rft.spage=1077&rft.epage=1086&rft.pages=1077-1086&rft.issn=0947-7411&rft.eissn=1432-1181&rft_id=info:doi/10.1007/s00231-019-02748-1&rft_dat=%3Cproquest_cross%3E2378943978%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2378943978&rft_id=info:pmid/&rfr_iscdi=true