Incorporation of High-Speed Shearing in the Fabrication of Whole Soybean Curd: Effects on Aggregation Behaviors and Microstructures
High-speed shearing (HSS) technology was used to mill the okara fibers in raw whole soybean flour (rWSF) suspension for fabrication of whole soybean curd (WSC). By measuring the medium diameter and analyzing the protein subunit composition of rWSF and heated whole soybean flour (hWSF), we found that...
Gespeichert in:
Veröffentlicht in: | Food and bioprocess technology 2020-04, Vol.13 (4), p.611-624 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 624 |
---|---|
container_issue | 4 |
container_start_page | 611 |
container_title | Food and bioprocess technology |
container_volume | 13 |
creator | Wang, Chenzhi Li, Lin Zhang, Qi Raheem, Dele Qin, Wen Wu, Dingtao Hu, Bin Yang, Wenyu Dong, Hongmin Vasanthan, Thava Zhang, Qing |
description | High-speed shearing (HSS) technology was used to mill the okara fibers in raw whole soybean flour (rWSF) suspension for fabrication of whole soybean curd (WSC). By measuring the medium diameter and analyzing the protein subunit composition of rWSF and heated whole soybean flour (hWSF), we found that HSS effectively micronized the insoluble fraction in suspension (especially the component cell layers of seed coat) but destroyed the structure of the native protein and caused the disappearance of specific protein band 7 in sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Further, we made WSC using HSS-treated hWSF suspension and analyzed its characteristics. The relative contents of α-helix, β-sheet, and β-turns all decreased after HSS, but the surface hydrophobicity showed an opposite trend. Additionally, the maximum emission wavelength blue- shifted after HSS. These results indicated that the secondary and tertiary structures of WSC were changed by HSS. Moreover, microstructural analysis based on a field emission scanning electron microscope (FESEM) and texture analyzer suggested that HSS led to the formation of a loose and less connected gel network and weakened the gel strength consequently. In summary, to separate and micronize okara individually and add them back to soymilk for WSC making was a considerable method. |
doi_str_mv | 10.1007/s11947-020-02417-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2378613581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2378613581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-402d46511ff23c51eccca492e0b82ccf0b2a2e71424d1090c6791866ddb99a493</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhiMEEqXwB5gsMQd8tvPFVqqWVipiKIjRcpzLR1XiYCdUnfnjpASVjeF0Nzzv3enxvGugt0BpdOcAEhH5lNG-BET-7sQbQcIDPwCRnB5nTs-9C-c2lIZUAB95X8taG9sYq9rK1MTkZFEVpb9uEDOyLlHZqi5IVZO2RDJXqa30kXwrzRbJ2uxTVDWZdja7J7M8R9060hOTorBYDPQDluqzMtYRVWfkqdLWuNZ2uu0sukvvLFdbh1e_fey9zmcv04W_en5cTicrX_OQt76gLBNhAJDnjOsAUGutRMKQpjHTOqcpUwwjEExkQBOqwyiBOAyzLE2SHuRj72bY21jz0aFr5cZ0tu5PSsajOAQexNBTbKAOPzqLuWxs9a7sXgKVB9lykC172fJHttz1IT6EXHMQhvZv9T-pb0pdg8k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2378613581</pqid></control><display><type>article</type><title>Incorporation of High-Speed Shearing in the Fabrication of Whole Soybean Curd: Effects on Aggregation Behaviors and Microstructures</title><source>SpringerLink Journals</source><creator>Wang, Chenzhi ; Li, Lin ; Zhang, Qi ; Raheem, Dele ; Qin, Wen ; Wu, Dingtao ; Hu, Bin ; Yang, Wenyu ; Dong, Hongmin ; Vasanthan, Thava ; Zhang, Qing</creator><creatorcontrib>Wang, Chenzhi ; Li, Lin ; Zhang, Qi ; Raheem, Dele ; Qin, Wen ; Wu, Dingtao ; Hu, Bin ; Yang, Wenyu ; Dong, Hongmin ; Vasanthan, Thava ; Zhang, Qing</creatorcontrib><description>High-speed shearing (HSS) technology was used to mill the okara fibers in raw whole soybean flour (rWSF) suspension for fabrication of whole soybean curd (WSC). By measuring the medium diameter and analyzing the protein subunit composition of rWSF and heated whole soybean flour (hWSF), we found that HSS effectively micronized the insoluble fraction in suspension (especially the component cell layers of seed coat) but destroyed the structure of the native protein and caused the disappearance of specific protein band 7 in sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Further, we made WSC using HSS-treated hWSF suspension and analyzed its characteristics. The relative contents of α-helix, β-sheet, and β-turns all decreased after HSS, but the surface hydrophobicity showed an opposite trend. Additionally, the maximum emission wavelength blue- shifted after HSS. These results indicated that the secondary and tertiary structures of WSC were changed by HSS. Moreover, microstructural analysis based on a field emission scanning electron microscope (FESEM) and texture analyzer suggested that HSS led to the formation of a loose and less connected gel network and weakened the gel strength consequently. In summary, to separate and micronize okara individually and add them back to soymilk for WSC making was a considerable method.</description><identifier>ISSN: 1935-5130</identifier><identifier>EISSN: 1935-5149</identifier><identifier>DOI: 10.1007/s11947-020-02417-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aggregation behavior ; Agriculture ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Diameters ; Electrophoresis ; Emission analysis ; Emissions ; Fabrication ; Fibers ; Field emission microscopy ; Flour ; Food Science ; Gel electrophoresis ; High speed ; Hydrophobicity ; Microstructural analysis ; Microstructure ; Okara ; Original Paper ; Polyacrylamide ; Protein composition ; Protein structure ; Proteins ; Scanning electron microscopy ; Shearing ; Sodium lauryl sulfate ; Soya bean milk ; Soybean milk ; Soybeans ; Subunit structure ; Tofu</subject><ispartof>Food and bioprocess technology, 2020-04, Vol.13 (4), p.611-624</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Food and Bioprocess Technology is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-402d46511ff23c51eccca492e0b82ccf0b2a2e71424d1090c6791866ddb99a493</citedby><cites>FETCH-LOGICAL-c363t-402d46511ff23c51eccca492e0b82ccf0b2a2e71424d1090c6791866ddb99a493</cites><orcidid>0000-0002-1321-4628</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11947-020-02417-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11947-020-02417-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wang, Chenzhi</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Raheem, Dele</creatorcontrib><creatorcontrib>Qin, Wen</creatorcontrib><creatorcontrib>Wu, Dingtao</creatorcontrib><creatorcontrib>Hu, Bin</creatorcontrib><creatorcontrib>Yang, Wenyu</creatorcontrib><creatorcontrib>Dong, Hongmin</creatorcontrib><creatorcontrib>Vasanthan, Thava</creatorcontrib><creatorcontrib>Zhang, Qing</creatorcontrib><title>Incorporation of High-Speed Shearing in the Fabrication of Whole Soybean Curd: Effects on Aggregation Behaviors and Microstructures</title><title>Food and bioprocess technology</title><addtitle>Food Bioprocess Technol</addtitle><description>High-speed shearing (HSS) technology was used to mill the okara fibers in raw whole soybean flour (rWSF) suspension for fabrication of whole soybean curd (WSC). By measuring the medium diameter and analyzing the protein subunit composition of rWSF and heated whole soybean flour (hWSF), we found that HSS effectively micronized the insoluble fraction in suspension (especially the component cell layers of seed coat) but destroyed the structure of the native protein and caused the disappearance of specific protein band 7 in sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Further, we made WSC using HSS-treated hWSF suspension and analyzed its characteristics. The relative contents of α-helix, β-sheet, and β-turns all decreased after HSS, but the surface hydrophobicity showed an opposite trend. Additionally, the maximum emission wavelength blue- shifted after HSS. These results indicated that the secondary and tertiary structures of WSC were changed by HSS. Moreover, microstructural analysis based on a field emission scanning electron microscope (FESEM) and texture analyzer suggested that HSS led to the formation of a loose and less connected gel network and weakened the gel strength consequently. In summary, to separate and micronize okara individually and add them back to soymilk for WSC making was a considerable method.</description><subject>Aggregation behavior</subject><subject>Agriculture</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Diameters</subject><subject>Electrophoresis</subject><subject>Emission analysis</subject><subject>Emissions</subject><subject>Fabrication</subject><subject>Fibers</subject><subject>Field emission microscopy</subject><subject>Flour</subject><subject>Food Science</subject><subject>Gel electrophoresis</subject><subject>High speed</subject><subject>Hydrophobicity</subject><subject>Microstructural analysis</subject><subject>Microstructure</subject><subject>Okara</subject><subject>Original Paper</subject><subject>Polyacrylamide</subject><subject>Protein composition</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Scanning electron microscopy</subject><subject>Shearing</subject><subject>Sodium lauryl sulfate</subject><subject>Soya bean milk</subject><subject>Soybean milk</subject><subject>Soybeans</subject><subject>Subunit structure</subject><subject>Tofu</subject><issn>1935-5130</issn><issn>1935-5149</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kD1PwzAQhiMEEqXwB5gsMQd8tvPFVqqWVipiKIjRcpzLR1XiYCdUnfnjpASVjeF0Nzzv3enxvGugt0BpdOcAEhH5lNG-BET-7sQbQcIDPwCRnB5nTs-9C-c2lIZUAB95X8taG9sYq9rK1MTkZFEVpb9uEDOyLlHZqi5IVZO2RDJXqa30kXwrzRbJ2uxTVDWZdja7J7M8R9060hOTorBYDPQDluqzMtYRVWfkqdLWuNZ2uu0sukvvLFdbh1e_fey9zmcv04W_en5cTicrX_OQt76gLBNhAJDnjOsAUGutRMKQpjHTOqcpUwwjEExkQBOqwyiBOAyzLE2SHuRj72bY21jz0aFr5cZ0tu5PSsajOAQexNBTbKAOPzqLuWxs9a7sXgKVB9lykC172fJHttz1IT6EXHMQhvZv9T-pb0pdg8k</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Wang, Chenzhi</creator><creator>Li, Lin</creator><creator>Zhang, Qi</creator><creator>Raheem, Dele</creator><creator>Qin, Wen</creator><creator>Wu, Dingtao</creator><creator>Hu, Bin</creator><creator>Yang, Wenyu</creator><creator>Dong, Hongmin</creator><creator>Vasanthan, Thava</creator><creator>Zhang, Qing</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0K</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-1321-4628</orcidid></search><sort><creationdate>20200401</creationdate><title>Incorporation of High-Speed Shearing in the Fabrication of Whole Soybean Curd: Effects on Aggregation Behaviors and Microstructures</title><author>Wang, Chenzhi ; Li, Lin ; Zhang, Qi ; Raheem, Dele ; Qin, Wen ; Wu, Dingtao ; Hu, Bin ; Yang, Wenyu ; Dong, Hongmin ; Vasanthan, Thava ; Zhang, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-402d46511ff23c51eccca492e0b82ccf0b2a2e71424d1090c6791866ddb99a493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aggregation behavior</topic><topic>Agriculture</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Diameters</topic><topic>Electrophoresis</topic><topic>Emission analysis</topic><topic>Emissions</topic><topic>Fabrication</topic><topic>Fibers</topic><topic>Field emission microscopy</topic><topic>Flour</topic><topic>Food Science</topic><topic>Gel electrophoresis</topic><topic>High speed</topic><topic>Hydrophobicity</topic><topic>Microstructural analysis</topic><topic>Microstructure</topic><topic>Okara</topic><topic>Original Paper</topic><topic>Polyacrylamide</topic><topic>Protein composition</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Scanning electron microscopy</topic><topic>Shearing</topic><topic>Sodium lauryl sulfate</topic><topic>Soya bean milk</topic><topic>Soybean milk</topic><topic>Soybeans</topic><topic>Subunit structure</topic><topic>Tofu</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chenzhi</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Raheem, Dele</creatorcontrib><creatorcontrib>Qin, Wen</creatorcontrib><creatorcontrib>Wu, Dingtao</creatorcontrib><creatorcontrib>Hu, Bin</creatorcontrib><creatorcontrib>Yang, Wenyu</creatorcontrib><creatorcontrib>Dong, Hongmin</creatorcontrib><creatorcontrib>Vasanthan, Thava</creatorcontrib><creatorcontrib>Zhang, Qing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Food and bioprocess technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chenzhi</au><au>Li, Lin</au><au>Zhang, Qi</au><au>Raheem, Dele</au><au>Qin, Wen</au><au>Wu, Dingtao</au><au>Hu, Bin</au><au>Yang, Wenyu</au><au>Dong, Hongmin</au><au>Vasanthan, Thava</au><au>Zhang, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporation of High-Speed Shearing in the Fabrication of Whole Soybean Curd: Effects on Aggregation Behaviors and Microstructures</atitle><jtitle>Food and bioprocess technology</jtitle><stitle>Food Bioprocess Technol</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>13</volume><issue>4</issue><spage>611</spage><epage>624</epage><pages>611-624</pages><issn>1935-5130</issn><eissn>1935-5149</eissn><abstract>High-speed shearing (HSS) technology was used to mill the okara fibers in raw whole soybean flour (rWSF) suspension for fabrication of whole soybean curd (WSC). By measuring the medium diameter and analyzing the protein subunit composition of rWSF and heated whole soybean flour (hWSF), we found that HSS effectively micronized the insoluble fraction in suspension (especially the component cell layers of seed coat) but destroyed the structure of the native protein and caused the disappearance of specific protein band 7 in sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Further, we made WSC using HSS-treated hWSF suspension and analyzed its characteristics. The relative contents of α-helix, β-sheet, and β-turns all decreased after HSS, but the surface hydrophobicity showed an opposite trend. Additionally, the maximum emission wavelength blue- shifted after HSS. These results indicated that the secondary and tertiary structures of WSC were changed by HSS. Moreover, microstructural analysis based on a field emission scanning electron microscope (FESEM) and texture analyzer suggested that HSS led to the formation of a loose and less connected gel network and weakened the gel strength consequently. In summary, to separate and micronize okara individually and add them back to soymilk for WSC making was a considerable method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11947-020-02417-w</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1321-4628</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1935-5130 |
ispartof | Food and bioprocess technology, 2020-04, Vol.13 (4), p.611-624 |
issn | 1935-5130 1935-5149 |
language | eng |
recordid | cdi_proquest_journals_2378613581 |
source | SpringerLink Journals |
subjects | Aggregation behavior Agriculture Biotechnology Chemistry Chemistry and Materials Science Chemistry/Food Science Diameters Electrophoresis Emission analysis Emissions Fabrication Fibers Field emission microscopy Flour Food Science Gel electrophoresis High speed Hydrophobicity Microstructural analysis Microstructure Okara Original Paper Polyacrylamide Protein composition Protein structure Proteins Scanning electron microscopy Shearing Sodium lauryl sulfate Soya bean milk Soybean milk Soybeans Subunit structure Tofu |
title | Incorporation of High-Speed Shearing in the Fabrication of Whole Soybean Curd: Effects on Aggregation Behaviors and Microstructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A09%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporation%20of%20High-Speed%20Shearing%20in%20the%20Fabrication%20of%20Whole%20Soybean%20Curd:%20Effects%20on%20Aggregation%20Behaviors%20and%20Microstructures&rft.jtitle=Food%20and%20bioprocess%20technology&rft.au=Wang,%20Chenzhi&rft.date=2020-04-01&rft.volume=13&rft.issue=4&rft.spage=611&rft.epage=624&rft.pages=611-624&rft.issn=1935-5130&rft.eissn=1935-5149&rft_id=info:doi/10.1007/s11947-020-02417-w&rft_dat=%3Cproquest_cross%3E2378613581%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2378613581&rft_id=info:pmid/&rfr_iscdi=true |