Beyond Alice and Bob: Improved Inapproximability for Maximum Independent Set in CONGEST

By far the most fruitful technique for showing lower bounds for the CONGEST model is reductions to two-party communication complexity. This technique has yielded nearly tight results for various fundamental problems such as distance computations, minimum spanning tree, minimum vertex cover, and more...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-05
Hauptverfasser: Efron, Yuval, Grossman, Ofer, Khoury, Seri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Efron, Yuval
Grossman, Ofer
Khoury, Seri
description By far the most fruitful technique for showing lower bounds for the CONGEST model is reductions to two-party communication complexity. This technique has yielded nearly tight results for various fundamental problems such as distance computations, minimum spanning tree, minimum vertex cover, and more. In this work, we take this technique a step further, and we introduce a framework of reductions to \(t\)-party communication complexity, for every \(t\geq 2\). Our framework enables us to show improved hardness results for maximum independent set. Recently, Bachrach et al.[PODC 2019] used the two-party framework to show hardness of approximation for maximum independent set. They show that finding a \((5/6+\epsilon)\)-approximation requires \(\Omega(n/\log^6 n)\) rounds, and finding a \((7/8+\epsilon)\)-approximation requires \(\Omega(n^2/\log^7 n)\) rounds, in the CONGEST model where \(n\) in the number of nodes in the network. We improve the results of Bachrach et al. by using reductions to multi-party communication complexity. Our results: (1) Any algorithm that finds a \((1/2+\epsilon)\)-approximation for maximum independent set in the CONGEST model requires \(\Omega(n/\log^3 n)\) rounds. (2) Any algorithm that finds a \((3/4+\epsilon)\)-approximation for maximum independent set in the CONGEST model requires \(\Omega(n^2/\log^3 n)\) rounds.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2378464714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2378464714</sourcerecordid><originalsourceid>FETCH-proquest_journals_23784647143</originalsourceid><addsrcrecordid>eNqNjM0KgkAcxJcgSMp3-ENnQXfXD7qlWHmoDgodZc0VVnTXXI18-_bQA3SZGeY3zApZmBDPiSjGG2Rr3bqui4MQ-z6x0CPmi5I1HDvx5MBMilV1gKwfRvXmNWSSDSZ-RM8q0YlpgUaNcGWmmHtDaz5wI3KCnE8gJCT32znNix1aN6zT3P75Fu1PaZFcHHP2mrmeylbNozSoxCSMaEBDj5L_Vl-6N0Bb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2378464714</pqid></control><display><type>article</type><title>Beyond Alice and Bob: Improved Inapproximability for Maximum Independent Set in CONGEST</title><source>Free E- Journals</source><creator>Efron, Yuval ; Grossman, Ofer ; Khoury, Seri</creator><creatorcontrib>Efron, Yuval ; Grossman, Ofer ; Khoury, Seri</creatorcontrib><description>By far the most fruitful technique for showing lower bounds for the CONGEST model is reductions to two-party communication complexity. This technique has yielded nearly tight results for various fundamental problems such as distance computations, minimum spanning tree, minimum vertex cover, and more. In this work, we take this technique a step further, and we introduce a framework of reductions to \(t\)-party communication complexity, for every \(t\geq 2\). Our framework enables us to show improved hardness results for maximum independent set. Recently, Bachrach et al.[PODC 2019] used the two-party framework to show hardness of approximation for maximum independent set. They show that finding a \((5/6+\epsilon)\)-approximation requires \(\Omega(n/\log^6 n)\) rounds, and finding a \((7/8+\epsilon)\)-approximation requires \(\Omega(n^2/\log^7 n)\) rounds, in the CONGEST model where \(n\) in the number of nodes in the network. We improve the results of Bachrach et al. by using reductions to multi-party communication complexity. Our results: (1) Any algorithm that finds a \((1/2+\epsilon)\)-approximation for maximum independent set in the CONGEST model requires \(\Omega(n/\log^3 n)\) rounds. (2) Any algorithm that finds a \((3/4+\epsilon)\)-approximation for maximum independent set in the CONGEST model requires \(\Omega(n^2/\log^3 n)\) rounds.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Approximation ; Communication ; Complexity ; Graph theory ; Hardness ; Lower bounds ; Mathematical analysis</subject><ispartof>arXiv.org, 2020-05</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Efron, Yuval</creatorcontrib><creatorcontrib>Grossman, Ofer</creatorcontrib><creatorcontrib>Khoury, Seri</creatorcontrib><title>Beyond Alice and Bob: Improved Inapproximability for Maximum Independent Set in CONGEST</title><title>arXiv.org</title><description>By far the most fruitful technique for showing lower bounds for the CONGEST model is reductions to two-party communication complexity. This technique has yielded nearly tight results for various fundamental problems such as distance computations, minimum spanning tree, minimum vertex cover, and more. In this work, we take this technique a step further, and we introduce a framework of reductions to \(t\)-party communication complexity, for every \(t\geq 2\). Our framework enables us to show improved hardness results for maximum independent set. Recently, Bachrach et al.[PODC 2019] used the two-party framework to show hardness of approximation for maximum independent set. They show that finding a \((5/6+\epsilon)\)-approximation requires \(\Omega(n/\log^6 n)\) rounds, and finding a \((7/8+\epsilon)\)-approximation requires \(\Omega(n^2/\log^7 n)\) rounds, in the CONGEST model where \(n\) in the number of nodes in the network. We improve the results of Bachrach et al. by using reductions to multi-party communication complexity. Our results: (1) Any algorithm that finds a \((1/2+\epsilon)\)-approximation for maximum independent set in the CONGEST model requires \(\Omega(n/\log^3 n)\) rounds. (2) Any algorithm that finds a \((3/4+\epsilon)\)-approximation for maximum independent set in the CONGEST model requires \(\Omega(n^2/\log^3 n)\) rounds.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Communication</subject><subject>Complexity</subject><subject>Graph theory</subject><subject>Hardness</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjM0KgkAcxJcgSMp3-ENnQXfXD7qlWHmoDgodZc0VVnTXXI18-_bQA3SZGeY3zApZmBDPiSjGG2Rr3bqui4MQ-z6x0CPmi5I1HDvx5MBMilV1gKwfRvXmNWSSDSZ-RM8q0YlpgUaNcGWmmHtDaz5wI3KCnE8gJCT32znNix1aN6zT3P75Fu1PaZFcHHP2mrmeylbNozSoxCSMaEBDj5L_Vl-6N0Bb</recordid><startdate>20200527</startdate><enddate>20200527</enddate><creator>Efron, Yuval</creator><creator>Grossman, Ofer</creator><creator>Khoury, Seri</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200527</creationdate><title>Beyond Alice and Bob: Improved Inapproximability for Maximum Independent Set in CONGEST</title><author>Efron, Yuval ; Grossman, Ofer ; Khoury, Seri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23784647143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Communication</topic><topic>Complexity</topic><topic>Graph theory</topic><topic>Hardness</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Efron, Yuval</creatorcontrib><creatorcontrib>Grossman, Ofer</creatorcontrib><creatorcontrib>Khoury, Seri</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Efron, Yuval</au><au>Grossman, Ofer</au><au>Khoury, Seri</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Beyond Alice and Bob: Improved Inapproximability for Maximum Independent Set in CONGEST</atitle><jtitle>arXiv.org</jtitle><date>2020-05-27</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>By far the most fruitful technique for showing lower bounds for the CONGEST model is reductions to two-party communication complexity. This technique has yielded nearly tight results for various fundamental problems such as distance computations, minimum spanning tree, minimum vertex cover, and more. In this work, we take this technique a step further, and we introduce a framework of reductions to \(t\)-party communication complexity, for every \(t\geq 2\). Our framework enables us to show improved hardness results for maximum independent set. Recently, Bachrach et al.[PODC 2019] used the two-party framework to show hardness of approximation for maximum independent set. They show that finding a \((5/6+\epsilon)\)-approximation requires \(\Omega(n/\log^6 n)\) rounds, and finding a \((7/8+\epsilon)\)-approximation requires \(\Omega(n^2/\log^7 n)\) rounds, in the CONGEST model where \(n\) in the number of nodes in the network. We improve the results of Bachrach et al. by using reductions to multi-party communication complexity. Our results: (1) Any algorithm that finds a \((1/2+\epsilon)\)-approximation for maximum independent set in the CONGEST model requires \(\Omega(n/\log^3 n)\) rounds. (2) Any algorithm that finds a \((3/4+\epsilon)\)-approximation for maximum independent set in the CONGEST model requires \(\Omega(n^2/\log^3 n)\) rounds.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2378464714
source Free E- Journals
subjects Algorithms
Approximation
Communication
Complexity
Graph theory
Hardness
Lower bounds
Mathematical analysis
title Beyond Alice and Bob: Improved Inapproximability for Maximum Independent Set in CONGEST
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A20%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Beyond%20Alice%20and%20Bob:%20Improved%20Inapproximability%20for%20Maximum%20Independent%20Set%20in%20CONGEST&rft.jtitle=arXiv.org&rft.au=Efron,%20Yuval&rft.date=2020-05-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2378464714%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2378464714&rft_id=info:pmid/&rfr_iscdi=true