Phase transitions of the Moran process and algorithmic consequences

The Moran process is a random process that models the spread of genetic mutations through graphs. On connected graphs, the process eventually reaches “fixation,” where all vertices are mutants, or “extinction,” where none are. Our main result is an almost‐tight upper bound on expected absorption tim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random structures & algorithms 2020-05, Vol.56 (3), p.597-647
Hauptverfasser: Goldberg, Leslie, Lapinskas, John, Richerby, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 647
container_issue 3
container_start_page 597
container_title Random structures & algorithms
container_volume 56
creator Goldberg, Leslie
Lapinskas, John
Richerby, David
description The Moran process is a random process that models the spread of genetic mutations through graphs. On connected graphs, the process eventually reaches “fixation,” where all vertices are mutants, or “extinction,” where none are. Our main result is an almost‐tight upper bound on expected absorption time. For all ϵ>0, we show that the expected absorption time on an n‐vertex graph is o(n3+ϵ). Specifically, it is at most n3eO((loglogn)3), and there is a family of graphs where it is Ω(n3). In proving this, we establish a phase transition in the probability of fixation, depending on the mutants' fitness r. We show that no similar phase transition occurs for digraphs, where it is already known that the expected absorption time can be exponential. Finally, we give an improved fully polynomial randomized approximation scheme (FPRAS) for approximating the probability of fixation. On degree‐bounded graphs where some basic properties are given, its running time is independent of the number of vertices.
doi_str_mv 10.1002/rsa.20890
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2378197595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2378197595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3320-85073846e17e91d6a8d9bd5097feb1b260bd8d2ebca399ec716ff7eb4e23b8d93</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWw4A8ssWKR1o8ktpdVBAWpCMRjbdnOhKRq42KnQv17XMKW1Yzmnpk7ughdUzKjhLB5iGbGiFTkBE0oUTJjOZWnxz5nmZKcnaOLGNeEEMEZn6DqpTUR8BBMH7uh833EvsFDC_jJpxneBe8gRmz6GpvNpw_d0G47h10i4WsPfVIv0VljNhGu_uoUfdzfvVcP2ep5-VgtVpnjnJFMFslT5iVQAYrWpZG1snVBlGjAUstKYmtZM7DOcKXACVo2jQCbA-M2sXyKbsa76alkHQe99vvQJ0vNuJBUiUIVibodKRd8jAEavQvd1oSDpkQfM9IpI_2bUWLnI_vdbeDwP6hf3xbjxg-NDGig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2378197595</pqid></control><display><type>article</type><title>Phase transitions of the Moran process and algorithmic consequences</title><source>Access via Wiley Online Library</source><creator>Goldberg, Leslie ; Lapinskas, John ; Richerby, David</creator><creatorcontrib>Goldberg, Leslie ; Lapinskas, John ; Richerby, David</creatorcontrib><description>The Moran process is a random process that models the spread of genetic mutations through graphs. On connected graphs, the process eventually reaches “fixation,” where all vertices are mutants, or “extinction,” where none are. Our main result is an almost‐tight upper bound on expected absorption time. For all ϵ&gt;0, we show that the expected absorption time on an n‐vertex graph is o(n3+ϵ). Specifically, it is at most n3eO((loglogn)3), and there is a family of graphs where it is Ω(n3). In proving this, we establish a phase transition in the probability of fixation, depending on the mutants' fitness r. We show that no similar phase transition occurs for digraphs, where it is already known that the expected absorption time can be exponential. Finally, we give an improved fully polynomial randomized approximation scheme (FPRAS) for approximating the probability of fixation. On degree‐bounded graphs where some basic properties are given, its running time is independent of the number of vertices.</description><identifier>ISSN: 1042-9832</identifier><identifier>EISSN: 1098-2418</identifier><identifier>DOI: 10.1002/rsa.20890</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>Absorption ; absorption time ; Apexes ; evolutionary dynamics ; Fixation ; fixation probability ; Graph theory ; Graphs ; Moran process ; Mutation ; Phase transitions ; Polynomials ; Random processes ; Upper bounds</subject><ispartof>Random structures &amp; algorithms, 2020-05, Vol.56 (3), p.597-647</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3320-85073846e17e91d6a8d9bd5097feb1b260bd8d2ebca399ec716ff7eb4e23b8d93</citedby><cites>FETCH-LOGICAL-c3320-85073846e17e91d6a8d9bd5097feb1b260bd8d2ebca399ec716ff7eb4e23b8d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frsa.20890$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frsa.20890$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids></links><search><creatorcontrib>Goldberg, Leslie</creatorcontrib><creatorcontrib>Lapinskas, John</creatorcontrib><creatorcontrib>Richerby, David</creatorcontrib><title>Phase transitions of the Moran process and algorithmic consequences</title><title>Random structures &amp; algorithms</title><description>The Moran process is a random process that models the spread of genetic mutations through graphs. On connected graphs, the process eventually reaches “fixation,” where all vertices are mutants, or “extinction,” where none are. Our main result is an almost‐tight upper bound on expected absorption time. For all ϵ&gt;0, we show that the expected absorption time on an n‐vertex graph is o(n3+ϵ). Specifically, it is at most n3eO((loglogn)3), and there is a family of graphs where it is Ω(n3). In proving this, we establish a phase transition in the probability of fixation, depending on the mutants' fitness r. We show that no similar phase transition occurs for digraphs, where it is already known that the expected absorption time can be exponential. Finally, we give an improved fully polynomial randomized approximation scheme (FPRAS) for approximating the probability of fixation. On degree‐bounded graphs where some basic properties are given, its running time is independent of the number of vertices.</description><subject>Absorption</subject><subject>absorption time</subject><subject>Apexes</subject><subject>evolutionary dynamics</subject><subject>Fixation</subject><subject>fixation probability</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Moran process</subject><subject>Mutation</subject><subject>Phase transitions</subject><subject>Polynomials</subject><subject>Random processes</subject><subject>Upper bounds</subject><issn>1042-9832</issn><issn>1098-2418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqWw4A8ssWKR1o8ktpdVBAWpCMRjbdnOhKRq42KnQv17XMKW1Yzmnpk7ughdUzKjhLB5iGbGiFTkBE0oUTJjOZWnxz5nmZKcnaOLGNeEEMEZn6DqpTUR8BBMH7uh833EvsFDC_jJpxneBe8gRmz6GpvNpw_d0G47h10i4WsPfVIv0VljNhGu_uoUfdzfvVcP2ep5-VgtVpnjnJFMFslT5iVQAYrWpZG1snVBlGjAUstKYmtZM7DOcKXACVo2jQCbA-M2sXyKbsa76alkHQe99vvQJ0vNuJBUiUIVibodKRd8jAEavQvd1oSDpkQfM9IpI_2bUWLnI_vdbeDwP6hf3xbjxg-NDGig</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Goldberg, Leslie</creator><creator>Lapinskas, John</creator><creator>Richerby, David</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202005</creationdate><title>Phase transitions of the Moran process and algorithmic consequences</title><author>Goldberg, Leslie ; Lapinskas, John ; Richerby, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3320-85073846e17e91d6a8d9bd5097feb1b260bd8d2ebca399ec716ff7eb4e23b8d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption</topic><topic>absorption time</topic><topic>Apexes</topic><topic>evolutionary dynamics</topic><topic>Fixation</topic><topic>fixation probability</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Moran process</topic><topic>Mutation</topic><topic>Phase transitions</topic><topic>Polynomials</topic><topic>Random processes</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goldberg, Leslie</creatorcontrib><creatorcontrib>Lapinskas, John</creatorcontrib><creatorcontrib>Richerby, David</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Random structures &amp; algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goldberg, Leslie</au><au>Lapinskas, John</au><au>Richerby, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase transitions of the Moran process and algorithmic consequences</atitle><jtitle>Random structures &amp; algorithms</jtitle><date>2020-05</date><risdate>2020</risdate><volume>56</volume><issue>3</issue><spage>597</spage><epage>647</epage><pages>597-647</pages><issn>1042-9832</issn><eissn>1098-2418</eissn><abstract>The Moran process is a random process that models the spread of genetic mutations through graphs. On connected graphs, the process eventually reaches “fixation,” where all vertices are mutants, or “extinction,” where none are. Our main result is an almost‐tight upper bound on expected absorption time. For all ϵ&gt;0, we show that the expected absorption time on an n‐vertex graph is o(n3+ϵ). Specifically, it is at most n3eO((loglogn)3), and there is a family of graphs where it is Ω(n3). In proving this, we establish a phase transition in the probability of fixation, depending on the mutants' fitness r. We show that no similar phase transition occurs for digraphs, where it is already known that the expected absorption time can be exponential. Finally, we give an improved fully polynomial randomized approximation scheme (FPRAS) for approximating the probability of fixation. On degree‐bounded graphs where some basic properties are given, its running time is independent of the number of vertices.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/rsa.20890</doi><tpages>51</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1042-9832
ispartof Random structures & algorithms, 2020-05, Vol.56 (3), p.597-647
issn 1042-9832
1098-2418
language eng
recordid cdi_proquest_journals_2378197595
source Access via Wiley Online Library
subjects Absorption
absorption time
Apexes
evolutionary dynamics
Fixation
fixation probability
Graph theory
Graphs
Moran process
Mutation
Phase transitions
Polynomials
Random processes
Upper bounds
title Phase transitions of the Moran process and algorithmic consequences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A37%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20transitions%20of%20the%20Moran%20process%20and%20algorithmic%20consequences&rft.jtitle=Random%20structures%20&%20algorithms&rft.au=Goldberg,%20Leslie&rft.date=2020-05&rft.volume=56&rft.issue=3&rft.spage=597&rft.epage=647&rft.pages=597-647&rft.issn=1042-9832&rft.eissn=1098-2418&rft_id=info:doi/10.1002/rsa.20890&rft_dat=%3Cproquest_cross%3E2378197595%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2378197595&rft_id=info:pmid/&rfr_iscdi=true