Design of Architected Materials for Thermoelastic Macrostructures Using Level Set Method

A level set topology optimization method is introduced and used to design periodic architected materials optimized for the maximum macrostructural stiffness considering thermoelasticity. The design variables are defined at the microscopic scale and updated by minimizing the total structural complian...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JOM (1989) 2020-04, Vol.72 (4), p.1734-1744
Hauptverfasser: Li, Lei, Du, Zongliang, Kim, H. Alicia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1744
container_issue 4
container_start_page 1734
container_title JOM (1989)
container_volume 72
creator Li, Lei
Du, Zongliang
Kim, H. Alicia
description A level set topology optimization method is introduced and used to design periodic architected materials optimized for the maximum macrostructural stiffness considering thermoelasticity. The design variables are defined at the microscopic scale and updated by minimizing the total structural compliance induced by mechanical and thermal expansion loads at the macroscopic scale. The two scales are coupled by the effective elasticity tensor calculated through the homogenization theory. A decomposition method is constructed to formulate several subproblems from the original optimization problem, enabling the efficient solution of this otherwise computationally expensive problem, especially when the number of material subdomains is large. The proposed method is demonstrated through several numerical examples. It is shown that the macrostructural geometry and boundary conditions have a significant impact on the optimized material designs when thermoelastic effects are considered. Porous material with well-designed microstructure is preferred over solid material when the thermal load is nonzero. Moreover, when a larger number of material microstructures is allowed in optimization, the overall performance is improved due to the expanded design space.
doi_str_mv 10.1007/s11837-020-04046-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2378098184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2378098184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-e323814392b2d39841dd0a115b85c8480b482f5e3d4349f076863cf1e44ea2fd3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAczSTZHezx1I_ocWDLXgL2-yk3dLu1iQr-O9NXcGbpxmY95kZHkKugd8C58VdANCyYFxwxhVXORMnZASZkgx0Bqep56pgSkt9Ti5C2PIEqRJG5P0eQ7NuaefoxNtNE9FGrOm8iuibaheo6zxdbNDvO9xVITY2zazvQvS9jb3HQJehadd0hp-4o28Y6RzjpqsvyZlLPF791jFZPj4sps9s9vr0Mp3MmJVZHhlKITUoWYqVqGWpFdQ1rwCylc6sVpqvlBYuQ1krqUrHi1zn0jpApbASrpZjcjPsPfjuo8cQzbbrfZtOGiELzUsNWqWUGFLH14NHZw6-2Vf-ywA3R4NmMGiSQfNjMNFjIgcopHC7Rv-3-h_qG7IYcxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2378098184</pqid></control><display><type>article</type><title>Design of Architected Materials for Thermoelastic Macrostructures Using Level Set Method</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Lei ; Du, Zongliang ; Kim, H. Alicia</creator><creatorcontrib>Li, Lei ; Du, Zongliang ; Kim, H. Alicia</creatorcontrib><description>A level set topology optimization method is introduced and used to design periodic architected materials optimized for the maximum macrostructural stiffness considering thermoelasticity. The design variables are defined at the microscopic scale and updated by minimizing the total structural compliance induced by mechanical and thermal expansion loads at the macroscopic scale. The two scales are coupled by the effective elasticity tensor calculated through the homogenization theory. A decomposition method is constructed to formulate several subproblems from the original optimization problem, enabling the efficient solution of this otherwise computationally expensive problem, especially when the number of material subdomains is large. The proposed method is demonstrated through several numerical examples. It is shown that the macrostructural geometry and boundary conditions have a significant impact on the optimized material designs when thermoelastic effects are considered. Porous material with well-designed microstructure is preferred over solid material when the thermal load is nonzero. Moreover, when a larger number of material microstructures is allowed in optimization, the overall performance is improved due to the expanded design space.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-020-04046-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Additive manufacturing ; Boundary conditions ; Chemistry/Food Science ; Decomposition ; Design ; Design optimization ; Earth Sciences ; Engineering ; Environment ; Homogenization ; Lasers ; Microstructure ; Modulus of elasticity ; Optimization ; Permeability ; Physics ; Porous materials ; Rapid prototyping ; Stiffness ; Technical Article ; Tensors ; Thermal analysis ; Thermal expansion ; Thermoelasticity ; Topology optimization</subject><ispartof>JOM (1989), 2020-04, Vol.72 (4), p.1734-1744</ispartof><rights>The Minerals, Metals &amp; Materials Society 2020</rights><rights>Copyright Springer Nature B.V. Apr 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-e323814392b2d39841dd0a115b85c8480b482f5e3d4349f076863cf1e44ea2fd3</citedby><cites>FETCH-LOGICAL-c356t-e323814392b2d39841dd0a115b85c8480b482f5e3d4349f076863cf1e44ea2fd3</cites><orcidid>0000-0002-2688-1243</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-020-04046-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-020-04046-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Du, Zongliang</creatorcontrib><creatorcontrib>Kim, H. Alicia</creatorcontrib><title>Design of Architected Materials for Thermoelastic Macrostructures Using Level Set Method</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>A level set topology optimization method is introduced and used to design periodic architected materials optimized for the maximum macrostructural stiffness considering thermoelasticity. The design variables are defined at the microscopic scale and updated by minimizing the total structural compliance induced by mechanical and thermal expansion loads at the macroscopic scale. The two scales are coupled by the effective elasticity tensor calculated through the homogenization theory. A decomposition method is constructed to formulate several subproblems from the original optimization problem, enabling the efficient solution of this otherwise computationally expensive problem, especially when the number of material subdomains is large. The proposed method is demonstrated through several numerical examples. It is shown that the macrostructural geometry and boundary conditions have a significant impact on the optimized material designs when thermoelastic effects are considered. Porous material with well-designed microstructure is preferred over solid material when the thermal load is nonzero. Moreover, when a larger number of material microstructures is allowed in optimization, the overall performance is improved due to the expanded design space.</description><subject>Additive manufacturing</subject><subject>Boundary conditions</subject><subject>Chemistry/Food Science</subject><subject>Decomposition</subject><subject>Design</subject><subject>Design optimization</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Environment</subject><subject>Homogenization</subject><subject>Lasers</subject><subject>Microstructure</subject><subject>Modulus of elasticity</subject><subject>Optimization</subject><subject>Permeability</subject><subject>Physics</subject><subject>Porous materials</subject><subject>Rapid prototyping</subject><subject>Stiffness</subject><subject>Technical Article</subject><subject>Tensors</subject><subject>Thermal analysis</subject><subject>Thermal expansion</subject><subject>Thermoelasticity</subject><subject>Topology optimization</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAczSTZHezx1I_ocWDLXgL2-yk3dLu1iQr-O9NXcGbpxmY95kZHkKugd8C58VdANCyYFxwxhVXORMnZASZkgx0Bqep56pgSkt9Ti5C2PIEqRJG5P0eQ7NuaefoxNtNE9FGrOm8iuibaheo6zxdbNDvO9xVITY2zazvQvS9jb3HQJehadd0hp-4o28Y6RzjpqsvyZlLPF791jFZPj4sps9s9vr0Mp3MmJVZHhlKITUoWYqVqGWpFdQ1rwCylc6sVpqvlBYuQ1krqUrHi1zn0jpApbASrpZjcjPsPfjuo8cQzbbrfZtOGiELzUsNWqWUGFLH14NHZw6-2Vf-ywA3R4NmMGiSQfNjMNFjIgcopHC7Rv-3-h_qG7IYcxw</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Li, Lei</creator><creator>Du, Zongliang</creator><creator>Kim, H. Alicia</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-2688-1243</orcidid></search><sort><creationdate>20200401</creationdate><title>Design of Architected Materials for Thermoelastic Macrostructures Using Level Set Method</title><author>Li, Lei ; Du, Zongliang ; Kim, H. Alicia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-e323814392b2d39841dd0a115b85c8480b482f5e3d4349f076863cf1e44ea2fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Additive manufacturing</topic><topic>Boundary conditions</topic><topic>Chemistry/Food Science</topic><topic>Decomposition</topic><topic>Design</topic><topic>Design optimization</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Environment</topic><topic>Homogenization</topic><topic>Lasers</topic><topic>Microstructure</topic><topic>Modulus of elasticity</topic><topic>Optimization</topic><topic>Permeability</topic><topic>Physics</topic><topic>Porous materials</topic><topic>Rapid prototyping</topic><topic>Stiffness</topic><topic>Technical Article</topic><topic>Tensors</topic><topic>Thermal analysis</topic><topic>Thermal expansion</topic><topic>Thermoelasticity</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Du, Zongliang</creatorcontrib><creatorcontrib>Kim, H. Alicia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade &amp; Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Lei</au><au>Du, Zongliang</au><au>Kim, H. Alicia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of Architected Materials for Thermoelastic Macrostructures Using Level Set Method</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>72</volume><issue>4</issue><spage>1734</spage><epage>1744</epage><pages>1734-1744</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><abstract>A level set topology optimization method is introduced and used to design periodic architected materials optimized for the maximum macrostructural stiffness considering thermoelasticity. The design variables are defined at the microscopic scale and updated by minimizing the total structural compliance induced by mechanical and thermal expansion loads at the macroscopic scale. The two scales are coupled by the effective elasticity tensor calculated through the homogenization theory. A decomposition method is constructed to formulate several subproblems from the original optimization problem, enabling the efficient solution of this otherwise computationally expensive problem, especially when the number of material subdomains is large. The proposed method is demonstrated through several numerical examples. It is shown that the macrostructural geometry and boundary conditions have a significant impact on the optimized material designs when thermoelastic effects are considered. Porous material with well-designed microstructure is preferred over solid material when the thermal load is nonzero. Moreover, when a larger number of material microstructures is allowed in optimization, the overall performance is improved due to the expanded design space.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-020-04046-2</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2688-1243</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1047-4838
ispartof JOM (1989), 2020-04, Vol.72 (4), p.1734-1744
issn 1047-4838
1543-1851
language eng
recordid cdi_proquest_journals_2378098184
source SpringerLink Journals - AutoHoldings
subjects Additive manufacturing
Boundary conditions
Chemistry/Food Science
Decomposition
Design
Design optimization
Earth Sciences
Engineering
Environment
Homogenization
Lasers
Microstructure
Modulus of elasticity
Optimization
Permeability
Physics
Porous materials
Rapid prototyping
Stiffness
Technical Article
Tensors
Thermal analysis
Thermal expansion
Thermoelasticity
Topology optimization
title Design of Architected Materials for Thermoelastic Macrostructures Using Level Set Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A44%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20Architected%20Materials%20for%20Thermoelastic%20Macrostructures%20Using%20Level%20Set%20Method&rft.jtitle=JOM%20(1989)&rft.au=Li,%20Lei&rft.date=2020-04-01&rft.volume=72&rft.issue=4&rft.spage=1734&rft.epage=1744&rft.pages=1734-1744&rft.issn=1047-4838&rft.eissn=1543-1851&rft_id=info:doi/10.1007/s11837-020-04046-2&rft_dat=%3Cproquest_cross%3E2378098184%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2378098184&rft_id=info:pmid/&rfr_iscdi=true