Control of Porosity in Freeze Casting
Many biologic structural materials have porous microstructures with a distribution and orientation of pores that are challenging to achieve using traditional methods of processing. In this investigation, numerical and experimental methods of evaluation were used to understand effects from the primar...
Gespeichert in:
Veröffentlicht in: | JOM (1989) 2020-04, Vol.72 (4), p.1477-1486 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1486 |
---|---|
container_issue | 4 |
container_start_page | 1477 |
container_title | JOM (1989) |
container_volume | 72 |
creator | Gil-Duran, S. Arola, D. Ossa, E. A. |
description | Many biologic structural materials have porous microstructures with a distribution and orientation of pores that are challenging to achieve using traditional methods of processing. In this investigation, numerical and experimental methods of evaluation were used to understand effects from the primary processing parameters on the temperature gradients during solidification in freeze casting of ceramics. The location and orientation of the temperature gradients were found to be highly dependent on the geometrical and thermal properties of the mold material used in processing. Furthermore, it was found that careful control of these processing variables can be used to design bioinspired porous materials with graded orientations and distributions of pores. |
doi_str_mv | 10.1007/s11837-019-03974-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2378098143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2378098143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-e6b5b084080bef725e7bad454584c2ecd8df12e3168f775c4402701cfd5c851d3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8F8RidyUeTHqW4KizoQc-hTZOly9qsSfdQf73RCt48zRze553hIeQS4QYB1G1C1FxRwIoCr5Sg0xFZoBScopZ4nHcQigrN9Sk5S2kLGRIVLsh1HYYxhl0RfPESYkj9OBX9UKyic5-uqJs09sPmnJz4Zpfcxe9ckrfV_Wv9SNfPD0_13ZpaXvKRurKVLWgBGlrnFZNOtU0npJBaWOZspzuPzHEstVdKWiGAKUDrO2nzmx1fkqu5dx_Dx8Gl0WzDIQ75pGFcaag0Cp5TbE7Z_G-Kzpt97N-bOBkE863DzDpM1mF-dJgpQ3yGUg4PGxf_qv-hvgDR62F8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2378098143</pqid></control><display><type>article</type><title>Control of Porosity in Freeze Casting</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gil-Duran, S. ; Arola, D. ; Ossa, E. A.</creator><creatorcontrib>Gil-Duran, S. ; Arola, D. ; Ossa, E. A.</creatorcontrib><description>Many biologic structural materials have porous microstructures with a distribution and orientation of pores that are challenging to achieve using traditional methods of processing. In this investigation, numerical and experimental methods of evaluation were used to understand effects from the primary processing parameters on the temperature gradients during solidification in freeze casting of ceramics. The location and orientation of the temperature gradients were found to be highly dependent on the geometrical and thermal properties of the mold material used in processing. Furthermore, it was found that careful control of these processing variables can be used to design bioinspired porous materials with graded orientations and distributions of pores.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-019-03974-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Advanced Manufacturing for Biomaterials and Biological Materials ; Alumina ; Aluminum ; Biomimetics ; Casting ; Ceramics ; Chemistry/Food Science ; Computer simulation ; Cooling ; Earth Sciences ; Engineering ; Environment ; Experimental methods ; Morphology ; Numerical methods ; Particle size ; Physics ; Polyvinyl alcohol ; Porosity ; Porous materials ; Process parameters ; Research methodology ; Sintering ; Solidification ; Synthetic products ; Temperature ; Temperature gradients ; Thermodynamic properties</subject><ispartof>JOM (1989), 2020-04, Vol.72 (4), p.1477-1486</ispartof><rights>The Minerals, Metals & Materials Society 2020</rights><rights>Copyright Springer Nature B.V. Apr 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-e6b5b084080bef725e7bad454584c2ecd8df12e3168f775c4402701cfd5c851d3</citedby><cites>FETCH-LOGICAL-c363t-e6b5b084080bef725e7bad454584c2ecd8df12e3168f775c4402701cfd5c851d3</cites><orcidid>0000-0002-3687-9307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-019-03974-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-019-03974-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Gil-Duran, S.</creatorcontrib><creatorcontrib>Arola, D.</creatorcontrib><creatorcontrib>Ossa, E. A.</creatorcontrib><title>Control of Porosity in Freeze Casting</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>Many biologic structural materials have porous microstructures with a distribution and orientation of pores that are challenging to achieve using traditional methods of processing. In this investigation, numerical and experimental methods of evaluation were used to understand effects from the primary processing parameters on the temperature gradients during solidification in freeze casting of ceramics. The location and orientation of the temperature gradients were found to be highly dependent on the geometrical and thermal properties of the mold material used in processing. Furthermore, it was found that careful control of these processing variables can be used to design bioinspired porous materials with graded orientations and distributions of pores.</description><subject>Advanced Manufacturing for Biomaterials and Biological Materials</subject><subject>Alumina</subject><subject>Aluminum</subject><subject>Biomimetics</subject><subject>Casting</subject><subject>Ceramics</subject><subject>Chemistry/Food Science</subject><subject>Computer simulation</subject><subject>Cooling</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Environment</subject><subject>Experimental methods</subject><subject>Morphology</subject><subject>Numerical methods</subject><subject>Particle size</subject><subject>Physics</subject><subject>Polyvinyl alcohol</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Process parameters</subject><subject>Research methodology</subject><subject>Sintering</subject><subject>Solidification</subject><subject>Synthetic products</subject><subject>Temperature</subject><subject>Temperature gradients</subject><subject>Thermodynamic properties</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8F8RidyUeTHqW4KizoQc-hTZOly9qsSfdQf73RCt48zRze553hIeQS4QYB1G1C1FxRwIoCr5Sg0xFZoBScopZ4nHcQigrN9Sk5S2kLGRIVLsh1HYYxhl0RfPESYkj9OBX9UKyic5-uqJs09sPmnJz4Zpfcxe9ckrfV_Wv9SNfPD0_13ZpaXvKRurKVLWgBGlrnFZNOtU0npJBaWOZspzuPzHEstVdKWiGAKUDrO2nzmx1fkqu5dx_Dx8Gl0WzDIQ75pGFcaag0Cp5TbE7Z_G-Kzpt97N-bOBkE863DzDpM1mF-dJgpQ3yGUg4PGxf_qv-hvgDR62F8</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Gil-Duran, S.</creator><creator>Arola, D.</creator><creator>Ossa, E. A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-3687-9307</orcidid></search><sort><creationdate>20200401</creationdate><title>Control of Porosity in Freeze Casting</title><author>Gil-Duran, S. ; Arola, D. ; Ossa, E. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-e6b5b084080bef725e7bad454584c2ecd8df12e3168f775c4402701cfd5c851d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Advanced Manufacturing for Biomaterials and Biological Materials</topic><topic>Alumina</topic><topic>Aluminum</topic><topic>Biomimetics</topic><topic>Casting</topic><topic>Ceramics</topic><topic>Chemistry/Food Science</topic><topic>Computer simulation</topic><topic>Cooling</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Environment</topic><topic>Experimental methods</topic><topic>Morphology</topic><topic>Numerical methods</topic><topic>Particle size</topic><topic>Physics</topic><topic>Polyvinyl alcohol</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Process parameters</topic><topic>Research methodology</topic><topic>Sintering</topic><topic>Solidification</topic><topic>Synthetic products</topic><topic>Temperature</topic><topic>Temperature gradients</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gil-Duran, S.</creatorcontrib><creatorcontrib>Arola, D.</creatorcontrib><creatorcontrib>Ossa, E. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade & Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade & Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gil-Duran, S.</au><au>Arola, D.</au><au>Ossa, E. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of Porosity in Freeze Casting</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>72</volume><issue>4</issue><spage>1477</spage><epage>1486</epage><pages>1477-1486</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><abstract>Many biologic structural materials have porous microstructures with a distribution and orientation of pores that are challenging to achieve using traditional methods of processing. In this investigation, numerical and experimental methods of evaluation were used to understand effects from the primary processing parameters on the temperature gradients during solidification in freeze casting of ceramics. The location and orientation of the temperature gradients were found to be highly dependent on the geometrical and thermal properties of the mold material used in processing. Furthermore, it was found that careful control of these processing variables can be used to design bioinspired porous materials with graded orientations and distributions of pores.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-019-03974-y</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3687-9307</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-4838 |
ispartof | JOM (1989), 2020-04, Vol.72 (4), p.1477-1486 |
issn | 1047-4838 1543-1851 |
language | eng |
recordid | cdi_proquest_journals_2378098143 |
source | SpringerLink Journals - AutoHoldings |
subjects | Advanced Manufacturing for Biomaterials and Biological Materials Alumina Aluminum Biomimetics Casting Ceramics Chemistry/Food Science Computer simulation Cooling Earth Sciences Engineering Environment Experimental methods Morphology Numerical methods Particle size Physics Polyvinyl alcohol Porosity Porous materials Process parameters Research methodology Sintering Solidification Synthetic products Temperature Temperature gradients Thermodynamic properties |
title | Control of Porosity in Freeze Casting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A57%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20Porosity%20in%20Freeze%20Casting&rft.jtitle=JOM%20(1989)&rft.au=Gil-Duran,%20S.&rft.date=2020-04-01&rft.volume=72&rft.issue=4&rft.spage=1477&rft.epage=1486&rft.pages=1477-1486&rft.issn=1047-4838&rft.eissn=1543-1851&rft_id=info:doi/10.1007/s11837-019-03974-y&rft_dat=%3Cproquest_cross%3E2378098143%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2378098143&rft_id=info:pmid/&rfr_iscdi=true |