Control of Porosity in Freeze Casting

Many biologic structural materials have porous microstructures with a distribution and orientation of pores that are challenging to achieve using traditional methods of processing. In this investigation, numerical and experimental methods of evaluation were used to understand effects from the primar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JOM (1989) 2020-04, Vol.72 (4), p.1477-1486
Hauptverfasser: Gil-Duran, S., Arola, D., Ossa, E. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1486
container_issue 4
container_start_page 1477
container_title JOM (1989)
container_volume 72
creator Gil-Duran, S.
Arola, D.
Ossa, E. A.
description Many biologic structural materials have porous microstructures with a distribution and orientation of pores that are challenging to achieve using traditional methods of processing. In this investigation, numerical and experimental methods of evaluation were used to understand effects from the primary processing parameters on the temperature gradients during solidification in freeze casting of ceramics. The location and orientation of the temperature gradients were found to be highly dependent on the geometrical and thermal properties of the mold material used in processing. Furthermore, it was found that careful control of these processing variables can be used to design bioinspired porous materials with graded orientations and distributions of pores.
doi_str_mv 10.1007/s11837-019-03974-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2378098143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2378098143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-e6b5b084080bef725e7bad454584c2ecd8df12e3168f775c4402701cfd5c851d3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8F8RidyUeTHqW4KizoQc-hTZOly9qsSfdQf73RCt48zRze553hIeQS4QYB1G1C1FxRwIoCr5Sg0xFZoBScopZ4nHcQigrN9Sk5S2kLGRIVLsh1HYYxhl0RfPESYkj9OBX9UKyic5-uqJs09sPmnJz4Zpfcxe9ckrfV_Wv9SNfPD0_13ZpaXvKRurKVLWgBGlrnFZNOtU0npJBaWOZspzuPzHEstVdKWiGAKUDrO2nzmx1fkqu5dx_Dx8Gl0WzDIQ75pGFcaag0Cp5TbE7Z_G-Kzpt97N-bOBkE863DzDpM1mF-dJgpQ3yGUg4PGxf_qv-hvgDR62F8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2378098143</pqid></control><display><type>article</type><title>Control of Porosity in Freeze Casting</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gil-Duran, S. ; Arola, D. ; Ossa, E. A.</creator><creatorcontrib>Gil-Duran, S. ; Arola, D. ; Ossa, E. A.</creatorcontrib><description>Many biologic structural materials have porous microstructures with a distribution and orientation of pores that are challenging to achieve using traditional methods of processing. In this investigation, numerical and experimental methods of evaluation were used to understand effects from the primary processing parameters on the temperature gradients during solidification in freeze casting of ceramics. The location and orientation of the temperature gradients were found to be highly dependent on the geometrical and thermal properties of the mold material used in processing. Furthermore, it was found that careful control of these processing variables can be used to design bioinspired porous materials with graded orientations and distributions of pores.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-019-03974-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Advanced Manufacturing for Biomaterials and Biological Materials ; Alumina ; Aluminum ; Biomimetics ; Casting ; Ceramics ; Chemistry/Food Science ; Computer simulation ; Cooling ; Earth Sciences ; Engineering ; Environment ; Experimental methods ; Morphology ; Numerical methods ; Particle size ; Physics ; Polyvinyl alcohol ; Porosity ; Porous materials ; Process parameters ; Research methodology ; Sintering ; Solidification ; Synthetic products ; Temperature ; Temperature gradients ; Thermodynamic properties</subject><ispartof>JOM (1989), 2020-04, Vol.72 (4), p.1477-1486</ispartof><rights>The Minerals, Metals &amp; Materials Society 2020</rights><rights>Copyright Springer Nature B.V. Apr 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-e6b5b084080bef725e7bad454584c2ecd8df12e3168f775c4402701cfd5c851d3</citedby><cites>FETCH-LOGICAL-c363t-e6b5b084080bef725e7bad454584c2ecd8df12e3168f775c4402701cfd5c851d3</cites><orcidid>0000-0002-3687-9307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-019-03974-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-019-03974-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Gil-Duran, S.</creatorcontrib><creatorcontrib>Arola, D.</creatorcontrib><creatorcontrib>Ossa, E. A.</creatorcontrib><title>Control of Porosity in Freeze Casting</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>Many biologic structural materials have porous microstructures with a distribution and orientation of pores that are challenging to achieve using traditional methods of processing. In this investigation, numerical and experimental methods of evaluation were used to understand effects from the primary processing parameters on the temperature gradients during solidification in freeze casting of ceramics. The location and orientation of the temperature gradients were found to be highly dependent on the geometrical and thermal properties of the mold material used in processing. Furthermore, it was found that careful control of these processing variables can be used to design bioinspired porous materials with graded orientations and distributions of pores.</description><subject>Advanced Manufacturing for Biomaterials and Biological Materials</subject><subject>Alumina</subject><subject>Aluminum</subject><subject>Biomimetics</subject><subject>Casting</subject><subject>Ceramics</subject><subject>Chemistry/Food Science</subject><subject>Computer simulation</subject><subject>Cooling</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Environment</subject><subject>Experimental methods</subject><subject>Morphology</subject><subject>Numerical methods</subject><subject>Particle size</subject><subject>Physics</subject><subject>Polyvinyl alcohol</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Process parameters</subject><subject>Research methodology</subject><subject>Sintering</subject><subject>Solidification</subject><subject>Synthetic products</subject><subject>Temperature</subject><subject>Temperature gradients</subject><subject>Thermodynamic properties</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8F8RidyUeTHqW4KizoQc-hTZOly9qsSfdQf73RCt48zRze553hIeQS4QYB1G1C1FxRwIoCr5Sg0xFZoBScopZ4nHcQigrN9Sk5S2kLGRIVLsh1HYYxhl0RfPESYkj9OBX9UKyic5-uqJs09sPmnJz4Zpfcxe9ckrfV_Wv9SNfPD0_13ZpaXvKRurKVLWgBGlrnFZNOtU0npJBaWOZspzuPzHEstVdKWiGAKUDrO2nzmx1fkqu5dx_Dx8Gl0WzDIQ75pGFcaag0Cp5TbE7Z_G-Kzpt97N-bOBkE863DzDpM1mF-dJgpQ3yGUg4PGxf_qv-hvgDR62F8</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Gil-Duran, S.</creator><creator>Arola, D.</creator><creator>Ossa, E. A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-3687-9307</orcidid></search><sort><creationdate>20200401</creationdate><title>Control of Porosity in Freeze Casting</title><author>Gil-Duran, S. ; Arola, D. ; Ossa, E. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-e6b5b084080bef725e7bad454584c2ecd8df12e3168f775c4402701cfd5c851d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Advanced Manufacturing for Biomaterials and Biological Materials</topic><topic>Alumina</topic><topic>Aluminum</topic><topic>Biomimetics</topic><topic>Casting</topic><topic>Ceramics</topic><topic>Chemistry/Food Science</topic><topic>Computer simulation</topic><topic>Cooling</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Environment</topic><topic>Experimental methods</topic><topic>Morphology</topic><topic>Numerical methods</topic><topic>Particle size</topic><topic>Physics</topic><topic>Polyvinyl alcohol</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Process parameters</topic><topic>Research methodology</topic><topic>Sintering</topic><topic>Solidification</topic><topic>Synthetic products</topic><topic>Temperature</topic><topic>Temperature gradients</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gil-Duran, S.</creatorcontrib><creatorcontrib>Arola, D.</creatorcontrib><creatorcontrib>Ossa, E. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade &amp; Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gil-Duran, S.</au><au>Arola, D.</au><au>Ossa, E. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of Porosity in Freeze Casting</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>72</volume><issue>4</issue><spage>1477</spage><epage>1486</epage><pages>1477-1486</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><abstract>Many biologic structural materials have porous microstructures with a distribution and orientation of pores that are challenging to achieve using traditional methods of processing. In this investigation, numerical and experimental methods of evaluation were used to understand effects from the primary processing parameters on the temperature gradients during solidification in freeze casting of ceramics. The location and orientation of the temperature gradients were found to be highly dependent on the geometrical and thermal properties of the mold material used in processing. Furthermore, it was found that careful control of these processing variables can be used to design bioinspired porous materials with graded orientations and distributions of pores.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-019-03974-y</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3687-9307</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1047-4838
ispartof JOM (1989), 2020-04, Vol.72 (4), p.1477-1486
issn 1047-4838
1543-1851
language eng
recordid cdi_proquest_journals_2378098143
source SpringerLink Journals - AutoHoldings
subjects Advanced Manufacturing for Biomaterials and Biological Materials
Alumina
Aluminum
Biomimetics
Casting
Ceramics
Chemistry/Food Science
Computer simulation
Cooling
Earth Sciences
Engineering
Environment
Experimental methods
Morphology
Numerical methods
Particle size
Physics
Polyvinyl alcohol
Porosity
Porous materials
Process parameters
Research methodology
Sintering
Solidification
Synthetic products
Temperature
Temperature gradients
Thermodynamic properties
title Control of Porosity in Freeze Casting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A57%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20Porosity%20in%20Freeze%20Casting&rft.jtitle=JOM%20(1989)&rft.au=Gil-Duran,%20S.&rft.date=2020-04-01&rft.volume=72&rft.issue=4&rft.spage=1477&rft.epage=1486&rft.pages=1477-1486&rft.issn=1047-4838&rft.eissn=1543-1851&rft_id=info:doi/10.1007/s11837-019-03974-y&rft_dat=%3Cproquest_cross%3E2378098143%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2378098143&rft_id=info:pmid/&rfr_iscdi=true