Data-Driven Classification of Coronal Hole and Streamer Belt Solar Wind

We present two new solar wind origin classification schemes developed independently using unsupervised machine learning. The first scheme aims to classify solar wind into three types: coronal-hole wind, streamer-belt wind, and ‘unclassified’ which does not fit into either of the previous two categor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar physics 2020-03, Vol.295 (3), Article 41
Hauptverfasser: Bloch, Téo, Watt, Clare, Owens, Mathew, McInnes, Leland, Macneil, Allan R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Solar physics
container_volume 295
creator Bloch, Téo
Watt, Clare
Owens, Mathew
McInnes, Leland
Macneil, Allan R.
description We present two new solar wind origin classification schemes developed independently using unsupervised machine learning. The first scheme aims to classify solar wind into three types: coronal-hole wind, streamer-belt wind, and ‘unclassified’ which does not fit into either of the previous two categories. The second scheme independently derives three clusters from the data; the coronal-hole and streamer-belt winds, and a differing unclassified cluster. The classification schemes are created using non-evolving solar wind parameters, such as ion charge states and composition, measured during the three Ulysses fast latitude scans. The schemes are subsequently applied to the Ulysses and the Advanced Compositional Explorer (ACE) datasets. The first scheme is based on oxygen charge state ratio and proton specific entropy. The second uses these data, as well as the carbon charge state ratio, the alpha-to-proton ratio, the iron-to-oxygen ratio, and the mean iron charge state. Thus, the classification schemes are grounded in the properties of the solar source regions. Furthermore, the techniques used are selected specifically to reduce the introduction of subjective biases into the schemes. We demonstrate significant best case disparities (minimum ≈8%, maximum ≈22%) with the traditional fast and slow solar wind determined using speed thresholds. By comparing the results between the in- (ACE) and out-of-ecliptic ( Ulysses ) data, we find morphological differences in the structure of coronal-hole wind. Our results show how a data-driven approach to the classification of solar wind origins can yield results which differ from those obtained using other methods. As such, the results form an important part of the information required to validate how well current understanding of solar origins and the solar wind match with the data we have.
doi_str_mv 10.1007/s11207-020-01609-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2377856885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377856885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-28b1bca8d399672a900d5b4b3d4f33e8e740f5245cbbf73dc1b5238435e6d8e3</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EEqXwAkyWmA1nXxw7I6TQIlViaCXYLCdxUKo0LnaKRJ-elCCxMd0N__fr7iPkmsMtB1B3kXMBioEABjyFjB1OyIRLhQwyfDslEwDUx12fk4sYNwBHTE7IfGZ7y2ah-XQdzVsbY1M3pe0b31Ff09wH39mWLnzrqO0quuqDs1sX6INre7ryrQ30temqS3JW2za6q985Jeunx3W-YMuX-XN-v2QlptgzoQtelFZXmGWpEjYDqGSRFFglNaLTTiVQS5HIsihqhVXJCylQJyhdWmmHU3Iz1u6C_9i72JuN34fhwmgEKqVlqrUcUmJMlcHHGFxtdqHZ2vBlOJjj42b0ZQZf5seXOQwQjlAcwt27C3_V_1DfXy5tJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377856885</pqid></control><display><type>article</type><title>Data-Driven Classification of Coronal Hole and Streamer Belt Solar Wind</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bloch, Téo ; Watt, Clare ; Owens, Mathew ; McInnes, Leland ; Macneil, Allan R.</creator><creatorcontrib>Bloch, Téo ; Watt, Clare ; Owens, Mathew ; McInnes, Leland ; Macneil, Allan R.</creatorcontrib><description>We present two new solar wind origin classification schemes developed independently using unsupervised machine learning. The first scheme aims to classify solar wind into three types: coronal-hole wind, streamer-belt wind, and ‘unclassified’ which does not fit into either of the previous two categories. The second scheme independently derives three clusters from the data; the coronal-hole and streamer-belt winds, and a differing unclassified cluster. The classification schemes are created using non-evolving solar wind parameters, such as ion charge states and composition, measured during the three Ulysses fast latitude scans. The schemes are subsequently applied to the Ulysses and the Advanced Compositional Explorer (ACE) datasets. The first scheme is based on oxygen charge state ratio and proton specific entropy. The second uses these data, as well as the carbon charge state ratio, the alpha-to-proton ratio, the iron-to-oxygen ratio, and the mean iron charge state. Thus, the classification schemes are grounded in the properties of the solar source regions. Furthermore, the techniques used are selected specifically to reduce the introduction of subjective biases into the schemes. We demonstrate significant best case disparities (minimum ≈8%, maximum ≈22%) with the traditional fast and slow solar wind determined using speed thresholds. By comparing the results between the in- (ACE) and out-of-ecliptic ( Ulysses ) data, we find morphological differences in the structure of coronal-hole wind. Our results show how a data-driven approach to the classification of solar wind origins can yield results which differ from those obtained using other methods. As such, the results form an important part of the information required to validate how well current understanding of solar origins and the solar wind match with the data we have.</description><identifier>ISSN: 0038-0938</identifier><identifier>EISSN: 1573-093X</identifier><identifier>DOI: 10.1007/s11207-020-01609-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Alpha iron ; Astrophysics and Astroparticles ; Atmospheric Sciences ; Classification ; Classification schemes ; Coronal holes ; Entropy ; Ion charge ; Machine learning ; Origins ; Oxygen ; Physics ; Physics and Astronomy ; Protons ; Solar corona ; Solar physics ; Solar wind ; Solar wind parameters ; Solar wind velocity ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Wind</subject><ispartof>Solar physics, 2020-03, Vol.295 (3), Article 41</ispartof><rights>The Author(s) 2020</rights><rights>Solar Physics is a copyright of Springer, (2020). All Rights Reserved. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-28b1bca8d399672a900d5b4b3d4f33e8e740f5245cbbf73dc1b5238435e6d8e3</citedby><cites>FETCH-LOGICAL-c363t-28b1bca8d399672a900d5b4b3d4f33e8e740f5245cbbf73dc1b5238435e6d8e3</cites><orcidid>0000-0003-3193-8993 ; 0000-0001-6017-1619 ; 0000-0003-2061-2453 ; 0000-0003-2143-6834 ; 0000-0003-4802-1209</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11207-020-01609-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11207-020-01609-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bloch, Téo</creatorcontrib><creatorcontrib>Watt, Clare</creatorcontrib><creatorcontrib>Owens, Mathew</creatorcontrib><creatorcontrib>McInnes, Leland</creatorcontrib><creatorcontrib>Macneil, Allan R.</creatorcontrib><title>Data-Driven Classification of Coronal Hole and Streamer Belt Solar Wind</title><title>Solar physics</title><addtitle>Sol Phys</addtitle><description>We present two new solar wind origin classification schemes developed independently using unsupervised machine learning. The first scheme aims to classify solar wind into three types: coronal-hole wind, streamer-belt wind, and ‘unclassified’ which does not fit into either of the previous two categories. The second scheme independently derives three clusters from the data; the coronal-hole and streamer-belt winds, and a differing unclassified cluster. The classification schemes are created using non-evolving solar wind parameters, such as ion charge states and composition, measured during the three Ulysses fast latitude scans. The schemes are subsequently applied to the Ulysses and the Advanced Compositional Explorer (ACE) datasets. The first scheme is based on oxygen charge state ratio and proton specific entropy. The second uses these data, as well as the carbon charge state ratio, the alpha-to-proton ratio, the iron-to-oxygen ratio, and the mean iron charge state. Thus, the classification schemes are grounded in the properties of the solar source regions. Furthermore, the techniques used are selected specifically to reduce the introduction of subjective biases into the schemes. We demonstrate significant best case disparities (minimum ≈8%, maximum ≈22%) with the traditional fast and slow solar wind determined using speed thresholds. By comparing the results between the in- (ACE) and out-of-ecliptic ( Ulysses ) data, we find morphological differences in the structure of coronal-hole wind. Our results show how a data-driven approach to the classification of solar wind origins can yield results which differ from those obtained using other methods. As such, the results form an important part of the information required to validate how well current understanding of solar origins and the solar wind match with the data we have.</description><subject>Alpha iron</subject><subject>Astrophysics and Astroparticles</subject><subject>Atmospheric Sciences</subject><subject>Classification</subject><subject>Classification schemes</subject><subject>Coronal holes</subject><subject>Entropy</subject><subject>Ion charge</subject><subject>Machine learning</subject><subject>Origins</subject><subject>Oxygen</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Protons</subject><subject>Solar corona</subject><subject>Solar physics</subject><subject>Solar wind</subject><subject>Solar wind parameters</subject><subject>Solar wind velocity</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Wind</subject><issn>0038-0938</issn><issn>1573-093X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kLFOwzAQhi0EEqXwAkyWmA1nXxw7I6TQIlViaCXYLCdxUKo0LnaKRJ-elCCxMd0N__fr7iPkmsMtB1B3kXMBioEABjyFjB1OyIRLhQwyfDslEwDUx12fk4sYNwBHTE7IfGZ7y2ah-XQdzVsbY1M3pe0b31Ff09wH39mWLnzrqO0quuqDs1sX6INre7ryrQ30temqS3JW2za6q985Jeunx3W-YMuX-XN-v2QlptgzoQtelFZXmGWpEjYDqGSRFFglNaLTTiVQS5HIsihqhVXJCylQJyhdWmmHU3Iz1u6C_9i72JuN34fhwmgEKqVlqrUcUmJMlcHHGFxtdqHZ2vBlOJjj42b0ZQZf5seXOQwQjlAcwt27C3_V_1DfXy5tJQ</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Bloch, Téo</creator><creator>Watt, Clare</creator><creator>Owens, Mathew</creator><creator>McInnes, Leland</creator><creator>Macneil, Allan R.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-3193-8993</orcidid><orcidid>https://orcid.org/0000-0001-6017-1619</orcidid><orcidid>https://orcid.org/0000-0003-2061-2453</orcidid><orcidid>https://orcid.org/0000-0003-2143-6834</orcidid><orcidid>https://orcid.org/0000-0003-4802-1209</orcidid></search><sort><creationdate>20200301</creationdate><title>Data-Driven Classification of Coronal Hole and Streamer Belt Solar Wind</title><author>Bloch, Téo ; Watt, Clare ; Owens, Mathew ; McInnes, Leland ; Macneil, Allan R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-28b1bca8d399672a900d5b4b3d4f33e8e740f5245cbbf73dc1b5238435e6d8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alpha iron</topic><topic>Astrophysics and Astroparticles</topic><topic>Atmospheric Sciences</topic><topic>Classification</topic><topic>Classification schemes</topic><topic>Coronal holes</topic><topic>Entropy</topic><topic>Ion charge</topic><topic>Machine learning</topic><topic>Origins</topic><topic>Oxygen</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Protons</topic><topic>Solar corona</topic><topic>Solar physics</topic><topic>Solar wind</topic><topic>Solar wind parameters</topic><topic>Solar wind velocity</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bloch, Téo</creatorcontrib><creatorcontrib>Watt, Clare</creatorcontrib><creatorcontrib>Owens, Mathew</creatorcontrib><creatorcontrib>McInnes, Leland</creatorcontrib><creatorcontrib>Macneil, Allan R.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Solar physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bloch, Téo</au><au>Watt, Clare</au><au>Owens, Mathew</au><au>McInnes, Leland</au><au>Macneil, Allan R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Classification of Coronal Hole and Streamer Belt Solar Wind</atitle><jtitle>Solar physics</jtitle><stitle>Sol Phys</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>295</volume><issue>3</issue><artnum>41</artnum><issn>0038-0938</issn><eissn>1573-093X</eissn><abstract>We present two new solar wind origin classification schemes developed independently using unsupervised machine learning. The first scheme aims to classify solar wind into three types: coronal-hole wind, streamer-belt wind, and ‘unclassified’ which does not fit into either of the previous two categories. The second scheme independently derives three clusters from the data; the coronal-hole and streamer-belt winds, and a differing unclassified cluster. The classification schemes are created using non-evolving solar wind parameters, such as ion charge states and composition, measured during the three Ulysses fast latitude scans. The schemes are subsequently applied to the Ulysses and the Advanced Compositional Explorer (ACE) datasets. The first scheme is based on oxygen charge state ratio and proton specific entropy. The second uses these data, as well as the carbon charge state ratio, the alpha-to-proton ratio, the iron-to-oxygen ratio, and the mean iron charge state. Thus, the classification schemes are grounded in the properties of the solar source regions. Furthermore, the techniques used are selected specifically to reduce the introduction of subjective biases into the schemes. We demonstrate significant best case disparities (minimum ≈8%, maximum ≈22%) with the traditional fast and slow solar wind determined using speed thresholds. By comparing the results between the in- (ACE) and out-of-ecliptic ( Ulysses ) data, we find morphological differences in the structure of coronal-hole wind. Our results show how a data-driven approach to the classification of solar wind origins can yield results which differ from those obtained using other methods. As such, the results form an important part of the information required to validate how well current understanding of solar origins and the solar wind match with the data we have.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11207-020-01609-z</doi><orcidid>https://orcid.org/0000-0003-3193-8993</orcidid><orcidid>https://orcid.org/0000-0001-6017-1619</orcidid><orcidid>https://orcid.org/0000-0003-2061-2453</orcidid><orcidid>https://orcid.org/0000-0003-2143-6834</orcidid><orcidid>https://orcid.org/0000-0003-4802-1209</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0038-0938
ispartof Solar physics, 2020-03, Vol.295 (3), Article 41
issn 0038-0938
1573-093X
language eng
recordid cdi_proquest_journals_2377856885
source SpringerLink Journals - AutoHoldings
subjects Alpha iron
Astrophysics and Astroparticles
Atmospheric Sciences
Classification
Classification schemes
Coronal holes
Entropy
Ion charge
Machine learning
Origins
Oxygen
Physics
Physics and Astronomy
Protons
Solar corona
Solar physics
Solar wind
Solar wind parameters
Solar wind velocity
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Wind
title Data-Driven Classification of Coronal Hole and Streamer Belt Solar Wind
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T05%3A47%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Classification%20of%20Coronal%20Hole%20and%20Streamer%20Belt%20Solar%20Wind&rft.jtitle=Solar%20physics&rft.au=Bloch,%20T%C3%A9o&rft.date=2020-03-01&rft.volume=295&rft.issue=3&rft.artnum=41&rft.issn=0038-0938&rft.eissn=1573-093X&rft_id=info:doi/10.1007/s11207-020-01609-z&rft_dat=%3Cproquest_cross%3E2377856885%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377856885&rft_id=info:pmid/&rfr_iscdi=true