The Role of the Parker Instability in Structuring the Interstellar Medium

The Parker instability, a Rayleigh-Taylor-like instability of thermal gas supported against gravity by magnetic fields and cosmic rays, is thought to be dynamically important for galaxy evolution, possibly promoting molecular cloud formation and the galactic dynamo. In previous work, we examined the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2020-03, Vol.891 (2), p.157
Hauptverfasser: Heintz, Evan, Bustard, Chad, Zweibel, Ellen G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 157
container_title The Astrophysical journal
container_volume 891
creator Heintz, Evan
Bustard, Chad
Zweibel, Ellen G.
description The Parker instability, a Rayleigh-Taylor-like instability of thermal gas supported against gravity by magnetic fields and cosmic rays, is thought to be dynamically important for galaxy evolution, possibly promoting molecular cloud formation and the galactic dynamo. In previous work, we examined the effect of three different cosmic-ray transport models on the Parker instability: decoupled (γc = 0), locked to the thermal gas (γc = 4/3), and coupled to the gas with streaming by self-confinement. We expand on that work here by considering radiative cooling, a smooth gravitational potential, and simulations into the nonlinear regime. We determine that cosmic-ray transport away from compression points, whether by diffusion or streaming, is the largest driver of the instability. Heating due to cosmic-ray streaming is also destabilizing and especially affects the nonlinear regime. While cooling depressurizes the dense gas, streaming cosmic rays heat and inflate the diffuse extraplanar gas, greatly modifying the phase structure of the medium. In 3D, we find that the fastest growth favors short-wavelength modes in the horizontal direction perpendicular to the background magnetic field; this is imprinted on Faraday rotation measure maps that may be used to detect the Parker instability. The modifications to the Parker instability that we observe in this work have large implications for the structure and evolution of galaxies, and they highlight the major role that cosmic rays play in shaping their environments.
doi_str_mv 10.3847/1538-4357/ab7453
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2377715638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377715638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-fc940faddcec69af06524d8d29ad8509e9e58797512ed9b01788161d55eaad083</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKd3jwGv1iVN0yRHGToLE0UneAtZ86qZXTuT9LD_3taKnjy9H3y-78EHoXNKrpjMxIxyJpOMcTEza5FxdoAmv6tDNCGEZEnOxOsxOglhM4ypUhNUrN4BP7U14LbCse8fjf8Aj4smRLN2tYt77Br8HH1Xxs675u2bKpoIPkSoa-PxPVjXbU_RUWXqAGc_dYpebm9W87tk-bAo5tfLpGScxKQqVUYqY20JZa5MRXKeZlbaVBkrOVGggEuhBKcpWLUmVEhJc2o5B2MskWyKLsa7O99-dhCi3rSdb_qXOmVCCMpzNlBkpErfhuCh0jvvtsbvNSV6EKYHO3qwo0dhfeRyjLh293fzX_wLSxlrdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377715638</pqid></control><display><type>article</type><title>The Role of the Parker Instability in Structuring the Interstellar Medium</title><source>IOP Publishing Free Content</source><creator>Heintz, Evan ; Bustard, Chad ; Zweibel, Ellen G.</creator><creatorcontrib>Heintz, Evan ; Bustard, Chad ; Zweibel, Ellen G.</creatorcontrib><description>The Parker instability, a Rayleigh-Taylor-like instability of thermal gas supported against gravity by magnetic fields and cosmic rays, is thought to be dynamically important for galaxy evolution, possibly promoting molecular cloud formation and the galactic dynamo. In previous work, we examined the effect of three different cosmic-ray transport models on the Parker instability: decoupled (γc = 0), locked to the thermal gas (γc = 4/3), and coupled to the gas with streaming by self-confinement. We expand on that work here by considering radiative cooling, a smooth gravitational potential, and simulations into the nonlinear regime. We determine that cosmic-ray transport away from compression points, whether by diffusion or streaming, is the largest driver of the instability. Heating due to cosmic-ray streaming is also destabilizing and especially affects the nonlinear regime. While cooling depressurizes the dense gas, streaming cosmic rays heat and inflate the diffuse extraplanar gas, greatly modifying the phase structure of the medium. In 3D, we find that the fastest growth favors short-wavelength modes in the horizontal direction perpendicular to the background magnetic field; this is imprinted on Faraday rotation measure maps that may be used to detect the Parker instability. The modifications to the Parker instability that we observe in this work have large implications for the structure and evolution of galaxies, and they highlight the major role that cosmic rays play in shaping their environments.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab7453</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Cloud formation ; Computer simulation ; Cooling ; Cosmic rays ; Faraday effect ; Galactic evolution ; Galaxies ; Gravitational instability ; Horizontal orientation ; Instability ; Interstellar dynamics ; Interstellar gas ; Interstellar magnetic fields ; Interstellar matter ; Interstellar medium ; Interstellar plasma ; Magnetic fields ; Molecular clouds ; Pressure reduction ; Radiative cooling ; Solid phases ; Structural stability</subject><ispartof>The Astrophysical journal, 2020-03, Vol.891 (2), p.157</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Mar 10, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-fc940faddcec69af06524d8d29ad8509e9e58797512ed9b01788161d55eaad083</citedby><cites>FETCH-LOGICAL-c350t-fc940faddcec69af06524d8d29ad8509e9e58797512ed9b01788161d55eaad083</cites><orcidid>0000-0003-1208-1840 ; 0000-0003-4821-713X ; 0000-0002-8366-2143</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab7453/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,778,782,27907,27908,38873,53850</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab7453$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Heintz, Evan</creatorcontrib><creatorcontrib>Bustard, Chad</creatorcontrib><creatorcontrib>Zweibel, Ellen G.</creatorcontrib><title>The Role of the Parker Instability in Structuring the Interstellar Medium</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>The Parker instability, a Rayleigh-Taylor-like instability of thermal gas supported against gravity by magnetic fields and cosmic rays, is thought to be dynamically important for galaxy evolution, possibly promoting molecular cloud formation and the galactic dynamo. In previous work, we examined the effect of three different cosmic-ray transport models on the Parker instability: decoupled (γc = 0), locked to the thermal gas (γc = 4/3), and coupled to the gas with streaming by self-confinement. We expand on that work here by considering radiative cooling, a smooth gravitational potential, and simulations into the nonlinear regime. We determine that cosmic-ray transport away from compression points, whether by diffusion or streaming, is the largest driver of the instability. Heating due to cosmic-ray streaming is also destabilizing and especially affects the nonlinear regime. While cooling depressurizes the dense gas, streaming cosmic rays heat and inflate the diffuse extraplanar gas, greatly modifying the phase structure of the medium. In 3D, we find that the fastest growth favors short-wavelength modes in the horizontal direction perpendicular to the background magnetic field; this is imprinted on Faraday rotation measure maps that may be used to detect the Parker instability. The modifications to the Parker instability that we observe in this work have large implications for the structure and evolution of galaxies, and they highlight the major role that cosmic rays play in shaping their environments.</description><subject>Astrophysics</subject><subject>Cloud formation</subject><subject>Computer simulation</subject><subject>Cooling</subject><subject>Cosmic rays</subject><subject>Faraday effect</subject><subject>Galactic evolution</subject><subject>Galaxies</subject><subject>Gravitational instability</subject><subject>Horizontal orientation</subject><subject>Instability</subject><subject>Interstellar dynamics</subject><subject>Interstellar gas</subject><subject>Interstellar magnetic fields</subject><subject>Interstellar matter</subject><subject>Interstellar medium</subject><subject>Interstellar plasma</subject><subject>Magnetic fields</subject><subject>Molecular clouds</subject><subject>Pressure reduction</subject><subject>Radiative cooling</subject><subject>Solid phases</subject><subject>Structural stability</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKd3jwGv1iVN0yRHGToLE0UneAtZ86qZXTuT9LD_3taKnjy9H3y-78EHoXNKrpjMxIxyJpOMcTEza5FxdoAmv6tDNCGEZEnOxOsxOglhM4ypUhNUrN4BP7U14LbCse8fjf8Aj4smRLN2tYt77Br8HH1Xxs675u2bKpoIPkSoa-PxPVjXbU_RUWXqAGc_dYpebm9W87tk-bAo5tfLpGScxKQqVUYqY20JZa5MRXKeZlbaVBkrOVGggEuhBKcpWLUmVEhJc2o5B2MskWyKLsa7O99-dhCi3rSdb_qXOmVCCMpzNlBkpErfhuCh0jvvtsbvNSV6EKYHO3qwo0dhfeRyjLh293fzX_wLSxlrdA</recordid><startdate>20200310</startdate><enddate>20200310</enddate><creator>Heintz, Evan</creator><creator>Bustard, Chad</creator><creator>Zweibel, Ellen G.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1208-1840</orcidid><orcidid>https://orcid.org/0000-0003-4821-713X</orcidid><orcidid>https://orcid.org/0000-0002-8366-2143</orcidid></search><sort><creationdate>20200310</creationdate><title>The Role of the Parker Instability in Structuring the Interstellar Medium</title><author>Heintz, Evan ; Bustard, Chad ; Zweibel, Ellen G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-fc940faddcec69af06524d8d29ad8509e9e58797512ed9b01788161d55eaad083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astrophysics</topic><topic>Cloud formation</topic><topic>Computer simulation</topic><topic>Cooling</topic><topic>Cosmic rays</topic><topic>Faraday effect</topic><topic>Galactic evolution</topic><topic>Galaxies</topic><topic>Gravitational instability</topic><topic>Horizontal orientation</topic><topic>Instability</topic><topic>Interstellar dynamics</topic><topic>Interstellar gas</topic><topic>Interstellar magnetic fields</topic><topic>Interstellar matter</topic><topic>Interstellar medium</topic><topic>Interstellar plasma</topic><topic>Magnetic fields</topic><topic>Molecular clouds</topic><topic>Pressure reduction</topic><topic>Radiative cooling</topic><topic>Solid phases</topic><topic>Structural stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heintz, Evan</creatorcontrib><creatorcontrib>Bustard, Chad</creatorcontrib><creatorcontrib>Zweibel, Ellen G.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Heintz, Evan</au><au>Bustard, Chad</au><au>Zweibel, Ellen G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of the Parker Instability in Structuring the Interstellar Medium</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-03-10</date><risdate>2020</risdate><volume>891</volume><issue>2</issue><spage>157</spage><pages>157-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>The Parker instability, a Rayleigh-Taylor-like instability of thermal gas supported against gravity by magnetic fields and cosmic rays, is thought to be dynamically important for galaxy evolution, possibly promoting molecular cloud formation and the galactic dynamo. In previous work, we examined the effect of three different cosmic-ray transport models on the Parker instability: decoupled (γc = 0), locked to the thermal gas (γc = 4/3), and coupled to the gas with streaming by self-confinement. We expand on that work here by considering radiative cooling, a smooth gravitational potential, and simulations into the nonlinear regime. We determine that cosmic-ray transport away from compression points, whether by diffusion or streaming, is the largest driver of the instability. Heating due to cosmic-ray streaming is also destabilizing and especially affects the nonlinear regime. While cooling depressurizes the dense gas, streaming cosmic rays heat and inflate the diffuse extraplanar gas, greatly modifying the phase structure of the medium. In 3D, we find that the fastest growth favors short-wavelength modes in the horizontal direction perpendicular to the background magnetic field; this is imprinted on Faraday rotation measure maps that may be used to detect the Parker instability. The modifications to the Parker instability that we observe in this work have large implications for the structure and evolution of galaxies, and they highlight the major role that cosmic rays play in shaping their environments.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab7453</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-1208-1840</orcidid><orcidid>https://orcid.org/0000-0003-4821-713X</orcidid><orcidid>https://orcid.org/0000-0002-8366-2143</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2020-03, Vol.891 (2), p.157
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2377715638
source IOP Publishing Free Content
subjects Astrophysics
Cloud formation
Computer simulation
Cooling
Cosmic rays
Faraday effect
Galactic evolution
Galaxies
Gravitational instability
Horizontal orientation
Instability
Interstellar dynamics
Interstellar gas
Interstellar magnetic fields
Interstellar matter
Interstellar medium
Interstellar plasma
Magnetic fields
Molecular clouds
Pressure reduction
Radiative cooling
Solid phases
Structural stability
title The Role of the Parker Instability in Structuring the Interstellar Medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T05%3A09%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20the%20Parker%20Instability%20in%20Structuring%20the%20Interstellar%20Medium&rft.jtitle=The%20Astrophysical%20journal&rft.au=Heintz,%20Evan&rft.date=2020-03-10&rft.volume=891&rft.issue=2&rft.spage=157&rft.pages=157-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab7453&rft_dat=%3Cproquest_O3W%3E2377715638%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377715638&rft_id=info:pmid/&rfr_iscdi=true