The Role of the Parker Instability in Structuring the Interstellar Medium
The Parker instability, a Rayleigh-Taylor-like instability of thermal gas supported against gravity by magnetic fields and cosmic rays, is thought to be dynamically important for galaxy evolution, possibly promoting molecular cloud formation and the galactic dynamo. In previous work, we examined the...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2020-03, Vol.891 (2), p.157 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 157 |
container_title | The Astrophysical journal |
container_volume | 891 |
creator | Heintz, Evan Bustard, Chad Zweibel, Ellen G. |
description | The Parker instability, a Rayleigh-Taylor-like instability of thermal gas supported against gravity by magnetic fields and cosmic rays, is thought to be dynamically important for galaxy evolution, possibly promoting molecular cloud formation and the galactic dynamo. In previous work, we examined the effect of three different cosmic-ray transport models on the Parker instability: decoupled (γc = 0), locked to the thermal gas (γc = 4/3), and coupled to the gas with streaming by self-confinement. We expand on that work here by considering radiative cooling, a smooth gravitational potential, and simulations into the nonlinear regime. We determine that cosmic-ray transport away from compression points, whether by diffusion or streaming, is the largest driver of the instability. Heating due to cosmic-ray streaming is also destabilizing and especially affects the nonlinear regime. While cooling depressurizes the dense gas, streaming cosmic rays heat and inflate the diffuse extraplanar gas, greatly modifying the phase structure of the medium. In 3D, we find that the fastest growth favors short-wavelength modes in the horizontal direction perpendicular to the background magnetic field; this is imprinted on Faraday rotation measure maps that may be used to detect the Parker instability. The modifications to the Parker instability that we observe in this work have large implications for the structure and evolution of galaxies, and they highlight the major role that cosmic rays play in shaping their environments. |
doi_str_mv | 10.3847/1538-4357/ab7453 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2377715638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377715638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-fc940faddcec69af06524d8d29ad8509e9e58797512ed9b01788161d55eaad083</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKd3jwGv1iVN0yRHGToLE0UneAtZ86qZXTuT9LD_3taKnjy9H3y-78EHoXNKrpjMxIxyJpOMcTEza5FxdoAmv6tDNCGEZEnOxOsxOglhM4ypUhNUrN4BP7U14LbCse8fjf8Aj4smRLN2tYt77Br8HH1Xxs675u2bKpoIPkSoa-PxPVjXbU_RUWXqAGc_dYpebm9W87tk-bAo5tfLpGScxKQqVUYqY20JZa5MRXKeZlbaVBkrOVGggEuhBKcpWLUmVEhJc2o5B2MskWyKLsa7O99-dhCi3rSdb_qXOmVCCMpzNlBkpErfhuCh0jvvtsbvNSV6EKYHO3qwo0dhfeRyjLh293fzX_wLSxlrdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377715638</pqid></control><display><type>article</type><title>The Role of the Parker Instability in Structuring the Interstellar Medium</title><source>IOP Publishing Free Content</source><creator>Heintz, Evan ; Bustard, Chad ; Zweibel, Ellen G.</creator><creatorcontrib>Heintz, Evan ; Bustard, Chad ; Zweibel, Ellen G.</creatorcontrib><description>The Parker instability, a Rayleigh-Taylor-like instability of thermal gas supported against gravity by magnetic fields and cosmic rays, is thought to be dynamically important for galaxy evolution, possibly promoting molecular cloud formation and the galactic dynamo. In previous work, we examined the effect of three different cosmic-ray transport models on the Parker instability: decoupled (γc = 0), locked to the thermal gas (γc = 4/3), and coupled to the gas with streaming by self-confinement. We expand on that work here by considering radiative cooling, a smooth gravitational potential, and simulations into the nonlinear regime. We determine that cosmic-ray transport away from compression points, whether by diffusion or streaming, is the largest driver of the instability. Heating due to cosmic-ray streaming is also destabilizing and especially affects the nonlinear regime. While cooling depressurizes the dense gas, streaming cosmic rays heat and inflate the diffuse extraplanar gas, greatly modifying the phase structure of the medium. In 3D, we find that the fastest growth favors short-wavelength modes in the horizontal direction perpendicular to the background magnetic field; this is imprinted on Faraday rotation measure maps that may be used to detect the Parker instability. The modifications to the Parker instability that we observe in this work have large implications for the structure and evolution of galaxies, and they highlight the major role that cosmic rays play in shaping their environments.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab7453</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Cloud formation ; Computer simulation ; Cooling ; Cosmic rays ; Faraday effect ; Galactic evolution ; Galaxies ; Gravitational instability ; Horizontal orientation ; Instability ; Interstellar dynamics ; Interstellar gas ; Interstellar magnetic fields ; Interstellar matter ; Interstellar medium ; Interstellar plasma ; Magnetic fields ; Molecular clouds ; Pressure reduction ; Radiative cooling ; Solid phases ; Structural stability</subject><ispartof>The Astrophysical journal, 2020-03, Vol.891 (2), p.157</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Mar 10, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-fc940faddcec69af06524d8d29ad8509e9e58797512ed9b01788161d55eaad083</citedby><cites>FETCH-LOGICAL-c350t-fc940faddcec69af06524d8d29ad8509e9e58797512ed9b01788161d55eaad083</cites><orcidid>0000-0003-1208-1840 ; 0000-0003-4821-713X ; 0000-0002-8366-2143</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab7453/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,778,782,27907,27908,38873,53850</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab7453$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Heintz, Evan</creatorcontrib><creatorcontrib>Bustard, Chad</creatorcontrib><creatorcontrib>Zweibel, Ellen G.</creatorcontrib><title>The Role of the Parker Instability in Structuring the Interstellar Medium</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>The Parker instability, a Rayleigh-Taylor-like instability of thermal gas supported against gravity by magnetic fields and cosmic rays, is thought to be dynamically important for galaxy evolution, possibly promoting molecular cloud formation and the galactic dynamo. In previous work, we examined the effect of three different cosmic-ray transport models on the Parker instability: decoupled (γc = 0), locked to the thermal gas (γc = 4/3), and coupled to the gas with streaming by self-confinement. We expand on that work here by considering radiative cooling, a smooth gravitational potential, and simulations into the nonlinear regime. We determine that cosmic-ray transport away from compression points, whether by diffusion or streaming, is the largest driver of the instability. Heating due to cosmic-ray streaming is also destabilizing and especially affects the nonlinear regime. While cooling depressurizes the dense gas, streaming cosmic rays heat and inflate the diffuse extraplanar gas, greatly modifying the phase structure of the medium. In 3D, we find that the fastest growth favors short-wavelength modes in the horizontal direction perpendicular to the background magnetic field; this is imprinted on Faraday rotation measure maps that may be used to detect the Parker instability. The modifications to the Parker instability that we observe in this work have large implications for the structure and evolution of galaxies, and they highlight the major role that cosmic rays play in shaping their environments.</description><subject>Astrophysics</subject><subject>Cloud formation</subject><subject>Computer simulation</subject><subject>Cooling</subject><subject>Cosmic rays</subject><subject>Faraday effect</subject><subject>Galactic evolution</subject><subject>Galaxies</subject><subject>Gravitational instability</subject><subject>Horizontal orientation</subject><subject>Instability</subject><subject>Interstellar dynamics</subject><subject>Interstellar gas</subject><subject>Interstellar magnetic fields</subject><subject>Interstellar matter</subject><subject>Interstellar medium</subject><subject>Interstellar plasma</subject><subject>Magnetic fields</subject><subject>Molecular clouds</subject><subject>Pressure reduction</subject><subject>Radiative cooling</subject><subject>Solid phases</subject><subject>Structural stability</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKd3jwGv1iVN0yRHGToLE0UneAtZ86qZXTuT9LD_3taKnjy9H3y-78EHoXNKrpjMxIxyJpOMcTEza5FxdoAmv6tDNCGEZEnOxOsxOglhM4ypUhNUrN4BP7U14LbCse8fjf8Aj4smRLN2tYt77Br8HH1Xxs675u2bKpoIPkSoa-PxPVjXbU_RUWXqAGc_dYpebm9W87tk-bAo5tfLpGScxKQqVUYqY20JZa5MRXKeZlbaVBkrOVGggEuhBKcpWLUmVEhJc2o5B2MskWyKLsa7O99-dhCi3rSdb_qXOmVCCMpzNlBkpErfhuCh0jvvtsbvNSV6EKYHO3qwo0dhfeRyjLh293fzX_wLSxlrdA</recordid><startdate>20200310</startdate><enddate>20200310</enddate><creator>Heintz, Evan</creator><creator>Bustard, Chad</creator><creator>Zweibel, Ellen G.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1208-1840</orcidid><orcidid>https://orcid.org/0000-0003-4821-713X</orcidid><orcidid>https://orcid.org/0000-0002-8366-2143</orcidid></search><sort><creationdate>20200310</creationdate><title>The Role of the Parker Instability in Structuring the Interstellar Medium</title><author>Heintz, Evan ; Bustard, Chad ; Zweibel, Ellen G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-fc940faddcec69af06524d8d29ad8509e9e58797512ed9b01788161d55eaad083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astrophysics</topic><topic>Cloud formation</topic><topic>Computer simulation</topic><topic>Cooling</topic><topic>Cosmic rays</topic><topic>Faraday effect</topic><topic>Galactic evolution</topic><topic>Galaxies</topic><topic>Gravitational instability</topic><topic>Horizontal orientation</topic><topic>Instability</topic><topic>Interstellar dynamics</topic><topic>Interstellar gas</topic><topic>Interstellar magnetic fields</topic><topic>Interstellar matter</topic><topic>Interstellar medium</topic><topic>Interstellar plasma</topic><topic>Magnetic fields</topic><topic>Molecular clouds</topic><topic>Pressure reduction</topic><topic>Radiative cooling</topic><topic>Solid phases</topic><topic>Structural stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heintz, Evan</creatorcontrib><creatorcontrib>Bustard, Chad</creatorcontrib><creatorcontrib>Zweibel, Ellen G.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Heintz, Evan</au><au>Bustard, Chad</au><au>Zweibel, Ellen G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of the Parker Instability in Structuring the Interstellar Medium</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-03-10</date><risdate>2020</risdate><volume>891</volume><issue>2</issue><spage>157</spage><pages>157-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>The Parker instability, a Rayleigh-Taylor-like instability of thermal gas supported against gravity by magnetic fields and cosmic rays, is thought to be dynamically important for galaxy evolution, possibly promoting molecular cloud formation and the galactic dynamo. In previous work, we examined the effect of three different cosmic-ray transport models on the Parker instability: decoupled (γc = 0), locked to the thermal gas (γc = 4/3), and coupled to the gas with streaming by self-confinement. We expand on that work here by considering radiative cooling, a smooth gravitational potential, and simulations into the nonlinear regime. We determine that cosmic-ray transport away from compression points, whether by diffusion or streaming, is the largest driver of the instability. Heating due to cosmic-ray streaming is also destabilizing and especially affects the nonlinear regime. While cooling depressurizes the dense gas, streaming cosmic rays heat and inflate the diffuse extraplanar gas, greatly modifying the phase structure of the medium. In 3D, we find that the fastest growth favors short-wavelength modes in the horizontal direction perpendicular to the background magnetic field; this is imprinted on Faraday rotation measure maps that may be used to detect the Parker instability. The modifications to the Parker instability that we observe in this work have large implications for the structure and evolution of galaxies, and they highlight the major role that cosmic rays play in shaping their environments.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab7453</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-1208-1840</orcidid><orcidid>https://orcid.org/0000-0003-4821-713X</orcidid><orcidid>https://orcid.org/0000-0002-8366-2143</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2020-03, Vol.891 (2), p.157 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_2377715638 |
source | IOP Publishing Free Content |
subjects | Astrophysics Cloud formation Computer simulation Cooling Cosmic rays Faraday effect Galactic evolution Galaxies Gravitational instability Horizontal orientation Instability Interstellar dynamics Interstellar gas Interstellar magnetic fields Interstellar matter Interstellar medium Interstellar plasma Magnetic fields Molecular clouds Pressure reduction Radiative cooling Solid phases Structural stability |
title | The Role of the Parker Instability in Structuring the Interstellar Medium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T05%3A09%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20the%20Parker%20Instability%20in%20Structuring%20the%20Interstellar%20Medium&rft.jtitle=The%20Astrophysical%20journal&rft.au=Heintz,%20Evan&rft.date=2020-03-10&rft.volume=891&rft.issue=2&rft.spage=157&rft.pages=157-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab7453&rft_dat=%3Cproquest_O3W%3E2377715638%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377715638&rft_id=info:pmid/&rfr_iscdi=true |