Chemistry and Physics of a Low-metallicity Hot Core in the Large Magellanic Cloud

We here present the results of 0.1 pc scale observations in 250 and 350 GHz toward a newly-discovered hot molecular core in a nearby low-metallicity galaxy, the Large Magellanic Cloud (LMC), with the Atacama Large Millimeter/submillimeter Array. A variety of C/N/O/Si/S-bearing molecules are detected...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2020-03, Vol.891 (2), p.164
Hauptverfasser: Shimonishi, Takashi, Das, Ankan, Sakai, Nami, Tanaka, Kei E. I., Aikawa, Yuri, Onaka, Takashi, Watanabe, Yoshimasa, Nishimura, Yuri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 164
container_title The Astrophysical journal
container_volume 891
creator Shimonishi, Takashi
Das, Ankan
Sakai, Nami
Tanaka, Kei E. I.
Aikawa, Yuri
Onaka, Takashi
Watanabe, Yoshimasa
Nishimura, Yuri
description We here present the results of 0.1 pc scale observations in 250 and 350 GHz toward a newly-discovered hot molecular core in a nearby low-metallicity galaxy, the Large Magellanic Cloud (LMC), with the Atacama Large Millimeter/submillimeter Array. A variety of C/N/O/Si/S-bearing molecules are detected toward the high-mass young stellar object, ST16. A rotating protostellar envelope is for the first time detected outside our Galaxy by SO2 and 34SO lines. An outflow cavity is traced by CCH and CN. The isotope abundance of sulfur in the source is estimated to be 32S/34S = 17 and 32S/33S = 53 based on SO, SO2, and CS isotopologues, suggesting that both 34S and 33S are overabundant in the LMC. Rotation diagram analyses show that the source is associated with hot gas (>100 K) traced by high-excitation lines of CH3OH and SO2, as well as warm gas (∼50 K) traced by CH3OH, SO2, 34SO, OCS, and CH3CN lines. A comparison of molecular abundances between LMC and Galactic hot cores suggests that organic molecules (e.g., CH3OH, a classical hot core tracer) show a large abundance variation in low metallicity, where the present source is classified into an organic-poor hot core. Our astrochemical simulations suggest that different grain temperatures during the initial ice-forming stage would contribute to the chemical differentiation. In contrast, SO2 shows similar abundances within all of the known LMC hot cores, and the typical abundance roughly scales with the LMC's metallicity. Nitrogen-bearing molecules are generally less abundant in the LMC hot cores, except for NO. The present results suggest that chemical compositions of hot cores do not always simply scale with the metallicity.
doi_str_mv 10.3847/1538-4357/ab6e6b
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2377715022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377715022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-86c11019f75355f0a88b95ac9525735ad2125f79cbeb0da3237562f25d750f693</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOI7uXQbEnXXy0TTNUoo6wogKCu5CmiYzGTpNTTpI_70tFd3o6vEe594HB4BzjK5pnvIFZjRPUsr4QpWZycoDMPs5HYIZQihNMsrfj8FJjNtxJULMwEuxMTsXu9BD1VTwedNHpyP0Fiq48p_JznSqrp12XQ-XvoOFDwa6BnYbA1cqrA18VGtT16pxGha131en4MiqOpqz7zkHb3e3r8UyWT3dPxQ3q0SnAnVJnmmMERaWM8qYRSrPS8GUFowwTpmqCCbMcqFLU6JKUUI5y4glrOIM2UzQObiYetvgP_YmdnLr96EZXsqB5RwzRMhAoYnSwccYjJVtcDsVeomRHMXJ0ZIcLclJ3BC5nCLOt7-dqt3KXGBJJM5S2VZ24K7-4P6t_QJ-P3o5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377715022</pqid></control><display><type>article</type><title>Chemistry and Physics of a Low-metallicity Hot Core in the Large Magellanic Cloud</title><source>IOP Publishing Free Content</source><creator>Shimonishi, Takashi ; Das, Ankan ; Sakai, Nami ; Tanaka, Kei E. I. ; Aikawa, Yuri ; Onaka, Takashi ; Watanabe, Yoshimasa ; Nishimura, Yuri</creator><creatorcontrib>Shimonishi, Takashi ; Das, Ankan ; Sakai, Nami ; Tanaka, Kei E. I. ; Aikawa, Yuri ; Onaka, Takashi ; Watanabe, Yoshimasa ; Nishimura, Yuri</creatorcontrib><description>We here present the results of 0.1 pc scale observations in 250 and 350 GHz toward a newly-discovered hot molecular core in a nearby low-metallicity galaxy, the Large Magellanic Cloud (LMC), with the Atacama Large Millimeter/submillimeter Array. A variety of C/N/O/Si/S-bearing molecules are detected toward the high-mass young stellar object, ST16. A rotating protostellar envelope is for the first time detected outside our Galaxy by SO2 and 34SO lines. An outflow cavity is traced by CCH and CN. The isotope abundance of sulfur in the source is estimated to be 32S/34S = 17 and 32S/33S = 53 based on SO, SO2, and CS isotopologues, suggesting that both 34S and 33S are overabundant in the LMC. Rotation diagram analyses show that the source is associated with hot gas (&gt;100 K) traced by high-excitation lines of CH3OH and SO2, as well as warm gas (∼50 K) traced by CH3OH, SO2, 34SO, OCS, and CH3CN lines. A comparison of molecular abundances between LMC and Galactic hot cores suggests that organic molecules (e.g., CH3OH, a classical hot core tracer) show a large abundance variation in low metallicity, where the present source is classified into an organic-poor hot core. Our astrochemical simulations suggest that different grain temperatures during the initial ice-forming stage would contribute to the chemical differentiation. In contrast, SO2 shows similar abundances within all of the known LMC hot cores, and the typical abundance roughly scales with the LMC's metallicity. Nitrogen-bearing molecules are generally less abundant in the LMC hot cores, except for NO. The present results suggest that chemical compositions of hot cores do not always simply scale with the metallicity.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab6e6b</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Abundance ; Astrochemistry ; Astrophysics ; Chemical composition ; Cores ; Dust continuum emission ; Galactic rotation ; Galaxies ; Ice formation ; Interstellar line emission ; Interstellar molecules ; Isotopic abundances ; Large Magellanic Cloud ; Magellanic clouds ; Metallicity ; Milky Way ; Nitrogen ; Organic chemistry ; Protostars ; Radio telescopes ; Star formation ; Submillimeter astronomy ; Sulfur ; Sulfur dioxide</subject><ispartof>The Astrophysical journal, 2020-03, Vol.891 (2), p.164</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Mar 10, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-86c11019f75355f0a88b95ac9525735ad2125f79cbeb0da3237562f25d750f693</citedby><cites>FETCH-LOGICAL-c490t-86c11019f75355f0a88b95ac9525735ad2125f79cbeb0da3237562f25d750f693</cites><orcidid>0000-0002-9668-3592 ; 0000-0002-0095-3624 ; 0000-0002-3297-4497 ; 0000-0003-3283-6884 ; 0000-0002-6907-0926 ; 0000-0002-8234-6747 ; 0000-0003-4615-602X ; 0000-0003-0563-067X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab6e6b/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab6e6b$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Shimonishi, Takashi</creatorcontrib><creatorcontrib>Das, Ankan</creatorcontrib><creatorcontrib>Sakai, Nami</creatorcontrib><creatorcontrib>Tanaka, Kei E. I.</creatorcontrib><creatorcontrib>Aikawa, Yuri</creatorcontrib><creatorcontrib>Onaka, Takashi</creatorcontrib><creatorcontrib>Watanabe, Yoshimasa</creatorcontrib><creatorcontrib>Nishimura, Yuri</creatorcontrib><title>Chemistry and Physics of a Low-metallicity Hot Core in the Large Magellanic Cloud</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We here present the results of 0.1 pc scale observations in 250 and 350 GHz toward a newly-discovered hot molecular core in a nearby low-metallicity galaxy, the Large Magellanic Cloud (LMC), with the Atacama Large Millimeter/submillimeter Array. A variety of C/N/O/Si/S-bearing molecules are detected toward the high-mass young stellar object, ST16. A rotating protostellar envelope is for the first time detected outside our Galaxy by SO2 and 34SO lines. An outflow cavity is traced by CCH and CN. The isotope abundance of sulfur in the source is estimated to be 32S/34S = 17 and 32S/33S = 53 based on SO, SO2, and CS isotopologues, suggesting that both 34S and 33S are overabundant in the LMC. Rotation diagram analyses show that the source is associated with hot gas (&gt;100 K) traced by high-excitation lines of CH3OH and SO2, as well as warm gas (∼50 K) traced by CH3OH, SO2, 34SO, OCS, and CH3CN lines. A comparison of molecular abundances between LMC and Galactic hot cores suggests that organic molecules (e.g., CH3OH, a classical hot core tracer) show a large abundance variation in low metallicity, where the present source is classified into an organic-poor hot core. Our astrochemical simulations suggest that different grain temperatures during the initial ice-forming stage would contribute to the chemical differentiation. In contrast, SO2 shows similar abundances within all of the known LMC hot cores, and the typical abundance roughly scales with the LMC's metallicity. Nitrogen-bearing molecules are generally less abundant in the LMC hot cores, except for NO. The present results suggest that chemical compositions of hot cores do not always simply scale with the metallicity.</description><subject>Abundance</subject><subject>Astrochemistry</subject><subject>Astrophysics</subject><subject>Chemical composition</subject><subject>Cores</subject><subject>Dust continuum emission</subject><subject>Galactic rotation</subject><subject>Galaxies</subject><subject>Ice formation</subject><subject>Interstellar line emission</subject><subject>Interstellar molecules</subject><subject>Isotopic abundances</subject><subject>Large Magellanic Cloud</subject><subject>Magellanic clouds</subject><subject>Metallicity</subject><subject>Milky Way</subject><subject>Nitrogen</subject><subject>Organic chemistry</subject><subject>Protostars</subject><subject>Radio telescopes</subject><subject>Star formation</subject><subject>Submillimeter astronomy</subject><subject>Sulfur</subject><subject>Sulfur dioxide</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAURYMoOI7uXQbEnXXy0TTNUoo6wogKCu5CmiYzGTpNTTpI_70tFd3o6vEe594HB4BzjK5pnvIFZjRPUsr4QpWZycoDMPs5HYIZQihNMsrfj8FJjNtxJULMwEuxMTsXu9BD1VTwedNHpyP0Fiq48p_JznSqrp12XQ-XvoOFDwa6BnYbA1cqrA18VGtT16pxGha131en4MiqOpqz7zkHb3e3r8UyWT3dPxQ3q0SnAnVJnmmMERaWM8qYRSrPS8GUFowwTpmqCCbMcqFLU6JKUUI5y4glrOIM2UzQObiYetvgP_YmdnLr96EZXsqB5RwzRMhAoYnSwccYjJVtcDsVeomRHMXJ0ZIcLclJ3BC5nCLOt7-dqt3KXGBJJM5S2VZ24K7-4P6t_QJ-P3o5</recordid><startdate>20200310</startdate><enddate>20200310</enddate><creator>Shimonishi, Takashi</creator><creator>Das, Ankan</creator><creator>Sakai, Nami</creator><creator>Tanaka, Kei E. I.</creator><creator>Aikawa, Yuri</creator><creator>Onaka, Takashi</creator><creator>Watanabe, Yoshimasa</creator><creator>Nishimura, Yuri</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9668-3592</orcidid><orcidid>https://orcid.org/0000-0002-0095-3624</orcidid><orcidid>https://orcid.org/0000-0002-3297-4497</orcidid><orcidid>https://orcid.org/0000-0003-3283-6884</orcidid><orcidid>https://orcid.org/0000-0002-6907-0926</orcidid><orcidid>https://orcid.org/0000-0002-8234-6747</orcidid><orcidid>https://orcid.org/0000-0003-4615-602X</orcidid><orcidid>https://orcid.org/0000-0003-0563-067X</orcidid></search><sort><creationdate>20200310</creationdate><title>Chemistry and Physics of a Low-metallicity Hot Core in the Large Magellanic Cloud</title><author>Shimonishi, Takashi ; Das, Ankan ; Sakai, Nami ; Tanaka, Kei E. I. ; Aikawa, Yuri ; Onaka, Takashi ; Watanabe, Yoshimasa ; Nishimura, Yuri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-86c11019f75355f0a88b95ac9525735ad2125f79cbeb0da3237562f25d750f693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abundance</topic><topic>Astrochemistry</topic><topic>Astrophysics</topic><topic>Chemical composition</topic><topic>Cores</topic><topic>Dust continuum emission</topic><topic>Galactic rotation</topic><topic>Galaxies</topic><topic>Ice formation</topic><topic>Interstellar line emission</topic><topic>Interstellar molecules</topic><topic>Isotopic abundances</topic><topic>Large Magellanic Cloud</topic><topic>Magellanic clouds</topic><topic>Metallicity</topic><topic>Milky Way</topic><topic>Nitrogen</topic><topic>Organic chemistry</topic><topic>Protostars</topic><topic>Radio telescopes</topic><topic>Star formation</topic><topic>Submillimeter astronomy</topic><topic>Sulfur</topic><topic>Sulfur dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shimonishi, Takashi</creatorcontrib><creatorcontrib>Das, Ankan</creatorcontrib><creatorcontrib>Sakai, Nami</creatorcontrib><creatorcontrib>Tanaka, Kei E. I.</creatorcontrib><creatorcontrib>Aikawa, Yuri</creatorcontrib><creatorcontrib>Onaka, Takashi</creatorcontrib><creatorcontrib>Watanabe, Yoshimasa</creatorcontrib><creatorcontrib>Nishimura, Yuri</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shimonishi, Takashi</au><au>Das, Ankan</au><au>Sakai, Nami</au><au>Tanaka, Kei E. I.</au><au>Aikawa, Yuri</au><au>Onaka, Takashi</au><au>Watanabe, Yoshimasa</au><au>Nishimura, Yuri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemistry and Physics of a Low-metallicity Hot Core in the Large Magellanic Cloud</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-03-10</date><risdate>2020</risdate><volume>891</volume><issue>2</issue><spage>164</spage><pages>164-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We here present the results of 0.1 pc scale observations in 250 and 350 GHz toward a newly-discovered hot molecular core in a nearby low-metallicity galaxy, the Large Magellanic Cloud (LMC), with the Atacama Large Millimeter/submillimeter Array. A variety of C/N/O/Si/S-bearing molecules are detected toward the high-mass young stellar object, ST16. A rotating protostellar envelope is for the first time detected outside our Galaxy by SO2 and 34SO lines. An outflow cavity is traced by CCH and CN. The isotope abundance of sulfur in the source is estimated to be 32S/34S = 17 and 32S/33S = 53 based on SO, SO2, and CS isotopologues, suggesting that both 34S and 33S are overabundant in the LMC. Rotation diagram analyses show that the source is associated with hot gas (&gt;100 K) traced by high-excitation lines of CH3OH and SO2, as well as warm gas (∼50 K) traced by CH3OH, SO2, 34SO, OCS, and CH3CN lines. A comparison of molecular abundances between LMC and Galactic hot cores suggests that organic molecules (e.g., CH3OH, a classical hot core tracer) show a large abundance variation in low metallicity, where the present source is classified into an organic-poor hot core. Our astrochemical simulations suggest that different grain temperatures during the initial ice-forming stage would contribute to the chemical differentiation. In contrast, SO2 shows similar abundances within all of the known LMC hot cores, and the typical abundance roughly scales with the LMC's metallicity. Nitrogen-bearing molecules are generally less abundant in the LMC hot cores, except for NO. The present results suggest that chemical compositions of hot cores do not always simply scale with the metallicity.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab6e6b</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-9668-3592</orcidid><orcidid>https://orcid.org/0000-0002-0095-3624</orcidid><orcidid>https://orcid.org/0000-0002-3297-4497</orcidid><orcidid>https://orcid.org/0000-0003-3283-6884</orcidid><orcidid>https://orcid.org/0000-0002-6907-0926</orcidid><orcidid>https://orcid.org/0000-0002-8234-6747</orcidid><orcidid>https://orcid.org/0000-0003-4615-602X</orcidid><orcidid>https://orcid.org/0000-0003-0563-067X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2020-03, Vol.891 (2), p.164
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2377715022
source IOP Publishing Free Content
subjects Abundance
Astrochemistry
Astrophysics
Chemical composition
Cores
Dust continuum emission
Galactic rotation
Galaxies
Ice formation
Interstellar line emission
Interstellar molecules
Isotopic abundances
Large Magellanic Cloud
Magellanic clouds
Metallicity
Milky Way
Nitrogen
Organic chemistry
Protostars
Radio telescopes
Star formation
Submillimeter astronomy
Sulfur
Sulfur dioxide
title Chemistry and Physics of a Low-metallicity Hot Core in the Large Magellanic Cloud
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A58%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemistry%20and%20Physics%20of%20a%20Low-metallicity%20Hot%20Core%20in%20the%20Large%20Magellanic%20Cloud&rft.jtitle=The%20Astrophysical%20journal&rft.au=Shimonishi,%20Takashi&rft.date=2020-03-10&rft.volume=891&rft.issue=2&rft.spage=164&rft.pages=164-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab6e6b&rft_dat=%3Cproquest_O3W%3E2377715022%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377715022&rft_id=info:pmid/&rfr_iscdi=true