Three-body Förster resonance of a new type in Rydberg atoms
The three-body Förster resonances 3 × nP3/2(|M|) →nS1/2 + (n + 1)S1/2 + nP3/2(|M*|), controlled by a constant electric field, were realised earlier by the authors in an ensemble of several cold Rydberg Rb atoms. One of the drawbacks of such resonances for potential application in three-qubit quantum...
Gespeichert in:
Veröffentlicht in: | Quantum electronics (Woodbury, N.Y.) N.Y.), 2020-03, Vol.50 (3), p.213-219 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 219 |
---|---|
container_issue | 3 |
container_start_page | 213 |
container_title | Quantum electronics (Woodbury, N.Y.) |
container_volume | 50 |
creator | Cheinet, P. Pham, K.-L Pillet, P. Beterov, I.I. Ashkarin, I.N. Tretyakov, D.B. Yakshina, E.A. Entin, V.M. Ryabtsev, I.I. |
description | The three-body Förster resonances 3 × nP3/2(|M|) →nS1/2 + (n + 1)S1/2 + nP3/2(|M*|), controlled by a constant electric field, were realised earlier by the authors in an ensemble of several cold Rydberg Rb atoms. One of the drawbacks of such resonances for potential application in three-qubit quantum gates is the proximity of the two-body Förster resonance 2 × nP3/2 → nS1/2 + (n + 1)S1/2, as well as the possibility of their implementation only for states with values of the principal quantum numbers n ⩽38. A three-body resonance of a new type, 3 × nP3/2 → nS1/2 + (n + 1)S1/2 + nP1/2, which can be realised for arbitrary n, is proposed and analysed. Its specific feature is also that the third atom transits into a state with a different total angular momentum J = 1/2, which has no Stark structure, so that the two-body resonance is completely absent. Numerical calculations showed that for not too strong interaction, it is possible to observe coherent three-body oscillations of the populations of collective states, which is of interest for developing new schemes of three-qubit quantum gates controlled by an electric field. |
doi_str_mv | 10.1070/QEL17253 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2377714056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377714056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-3c9a24b63779b81fd71169bfd8c138f6ac39508077359dd69ca5292481bc96763</originalsourceid><addsrcrecordid>eNp9kd1KwzAUgIMoOObARwjohV5Uk-YfvBljc0JBlHkd0jR1la2ZSaf0xXwBX8yOqrsQvDqHw8d3_gA4xegKI4GuH6YZFikjB2CAKZcJFUoddjniJBESy2MwirHKEaMUMcnlANwslsG5JPdFC2efHyE2LsDgoq9NbR30JTSwdu-waTcOVjV8bIvchWdoGr-OJ-CoNKvoRt9xCJ5m08VknmT3t3eTcZZYSkWTEKtMSnNOhFC5xGUhMOYqLwtpMZElN5YohiQSgjBVFFxZw1KVUolzq7jgZAjOeq-PTaWjrRpnl9bXtbONTgmmWCrWUZc9tTQrvQnV2oRWe1Pp-TjTuxoiSEjJyRveGzfBv25dbPSL34a6W6LzScoETpn8nxJC4O6Ku-kuesoGH2Nw5W9zjPTuLfrnLR163qOV3-xdf7AvwlWFxw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377714056</pqid></control><display><type>article</type><title>Three-body Förster resonance of a new type in Rydberg atoms</title><source>Institute of Physics Journals</source><creator>Cheinet, P. ; Pham, K.-L ; Pillet, P. ; Beterov, I.I. ; Ashkarin, I.N. ; Tretyakov, D.B. ; Yakshina, E.A. ; Entin, V.M. ; Ryabtsev, I.I.</creator><creatorcontrib>Cheinet, P. ; Pham, K.-L ; Pillet, P. ; Beterov, I.I. ; Ashkarin, I.N. ; Tretyakov, D.B. ; Yakshina, E.A. ; Entin, V.M. ; Ryabtsev, I.I.</creatorcontrib><description>The three-body Förster resonances 3 × nP3/2(|M|) →nS1/2 + (n + 1)S1/2 + nP3/2(|M*|), controlled by a constant electric field, were realised earlier by the authors in an ensemble of several cold Rydberg Rb atoms. One of the drawbacks of such resonances for potential application in three-qubit quantum gates is the proximity of the two-body Förster resonance 2 × nP3/2 → nS1/2 + (n + 1)S1/2, as well as the possibility of their implementation only for states with values of the principal quantum numbers n ⩽38. A three-body resonance of a new type, 3 × nP3/2 → nS1/2 + (n + 1)S1/2 + nP1/2, which can be realised for arbitrary n, is proposed and analysed. Its specific feature is also that the third atom transits into a state with a different total angular momentum J = 1/2, which has no Stark structure, so that the two-body resonance is completely absent. Numerical calculations showed that for not too strong interaction, it is possible to observe coherent three-body oscillations of the populations of collective states, which is of interest for developing new schemes of three-qubit quantum gates controlled by an electric field.</description><identifier>ISSN: 1063-7818</identifier><identifier>EISSN: 1468-4799</identifier><identifier>DOI: 10.1070/QEL17253</identifier><language>eng</language><publisher>Bristol: Kvantovaya Elektronika, Turpion Ltd and IOP Publishing</publisher><subject>ANGULAR MOMENTUM ; ATOMIC AND MOLECULAR PHYSICS ; Atomic Physics ; ELECTRIC FIELDS ; Förster resonance ; interaction ; OSCILLATIONS ; Physics ; POTENTIALS ; QUANTUM NUMBERS ; Quantum Physics ; QUBITS ; Qubits (quantum computing) ; RESONANCE ; Rydberg atoms ; STRONG INTERACTIONS ; Strong interactions (field theory) ; TWO-BODY PROBLEM</subject><ispartof>Quantum electronics (Woodbury, N.Y.), 2020-03, Vol.50 (3), p.213-219</ispartof><rights>2020 Kvantovaya Elektronika, Turpion Ltd and IOP Publishing Ltd</rights><rights>Copyright IOP Publishing Mar 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-3c9a24b63779b81fd71169bfd8c138f6ac39508077359dd69ca5292481bc96763</citedby><cites>FETCH-LOGICAL-c447t-3c9a24b63779b81fd71169bfd8c138f6ac39508077359dd69ca5292481bc96763</cites><orcidid>0000-0002-9292-9735</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/QEL17253/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03078863$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/23141895$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheinet, P.</creatorcontrib><creatorcontrib>Pham, K.-L</creatorcontrib><creatorcontrib>Pillet, P.</creatorcontrib><creatorcontrib>Beterov, I.I.</creatorcontrib><creatorcontrib>Ashkarin, I.N.</creatorcontrib><creatorcontrib>Tretyakov, D.B.</creatorcontrib><creatorcontrib>Yakshina, E.A.</creatorcontrib><creatorcontrib>Entin, V.M.</creatorcontrib><creatorcontrib>Ryabtsev, I.I.</creatorcontrib><title>Three-body Förster resonance of a new type in Rydberg atoms</title><title>Quantum electronics (Woodbury, N.Y.)</title><addtitle>Quantum Electron</addtitle><description>The three-body Förster resonances 3 × nP3/2(|M|) →nS1/2 + (n + 1)S1/2 + nP3/2(|M*|), controlled by a constant electric field, were realised earlier by the authors in an ensemble of several cold Rydberg Rb atoms. One of the drawbacks of such resonances for potential application in three-qubit quantum gates is the proximity of the two-body Förster resonance 2 × nP3/2 → nS1/2 + (n + 1)S1/2, as well as the possibility of their implementation only for states with values of the principal quantum numbers n ⩽38. A three-body resonance of a new type, 3 × nP3/2 → nS1/2 + (n + 1)S1/2 + nP1/2, which can be realised for arbitrary n, is proposed and analysed. Its specific feature is also that the third atom transits into a state with a different total angular momentum J = 1/2, which has no Stark structure, so that the two-body resonance is completely absent. Numerical calculations showed that for not too strong interaction, it is possible to observe coherent three-body oscillations of the populations of collective states, which is of interest for developing new schemes of three-qubit quantum gates controlled by an electric field.</description><subject>ANGULAR MOMENTUM</subject><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>Atomic Physics</subject><subject>ELECTRIC FIELDS</subject><subject>Förster resonance</subject><subject>interaction</subject><subject>OSCILLATIONS</subject><subject>Physics</subject><subject>POTENTIALS</subject><subject>QUANTUM NUMBERS</subject><subject>Quantum Physics</subject><subject>QUBITS</subject><subject>Qubits (quantum computing)</subject><subject>RESONANCE</subject><subject>Rydberg atoms</subject><subject>STRONG INTERACTIONS</subject><subject>Strong interactions (field theory)</subject><subject>TWO-BODY PROBLEM</subject><issn>1063-7818</issn><issn>1468-4799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kd1KwzAUgIMoOObARwjohV5Uk-YfvBljc0JBlHkd0jR1la2ZSaf0xXwBX8yOqrsQvDqHw8d3_gA4xegKI4GuH6YZFikjB2CAKZcJFUoddjniJBESy2MwirHKEaMUMcnlANwslsG5JPdFC2efHyE2LsDgoq9NbR30JTSwdu-waTcOVjV8bIvchWdoGr-OJ-CoNKvoRt9xCJ5m08VknmT3t3eTcZZYSkWTEKtMSnNOhFC5xGUhMOYqLwtpMZElN5YohiQSgjBVFFxZw1KVUolzq7jgZAjOeq-PTaWjrRpnl9bXtbONTgmmWCrWUZc9tTQrvQnV2oRWe1Pp-TjTuxoiSEjJyRveGzfBv25dbPSL34a6W6LzScoETpn8nxJC4O6Ku-kuesoGH2Nw5W9zjPTuLfrnLR163qOV3-xdf7AvwlWFxw</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Cheinet, P.</creator><creator>Pham, K.-L</creator><creator>Pillet, P.</creator><creator>Beterov, I.I.</creator><creator>Ashkarin, I.N.</creator><creator>Tretyakov, D.B.</creator><creator>Yakshina, E.A.</creator><creator>Entin, V.M.</creator><creator>Ryabtsev, I.I.</creator><general>Kvantovaya Elektronika, Turpion Ltd and IOP Publishing</general><general>IOP Publishing</general><general>Turpion</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9292-9735</orcidid></search><sort><creationdate>20200301</creationdate><title>Three-body Förster resonance of a new type in Rydberg atoms</title><author>Cheinet, P. ; Pham, K.-L ; Pillet, P. ; Beterov, I.I. ; Ashkarin, I.N. ; Tretyakov, D.B. ; Yakshina, E.A. ; Entin, V.M. ; Ryabtsev, I.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-3c9a24b63779b81fd71169bfd8c138f6ac39508077359dd69ca5292481bc96763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ANGULAR MOMENTUM</topic><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>Atomic Physics</topic><topic>ELECTRIC FIELDS</topic><topic>Förster resonance</topic><topic>interaction</topic><topic>OSCILLATIONS</topic><topic>Physics</topic><topic>POTENTIALS</topic><topic>QUANTUM NUMBERS</topic><topic>Quantum Physics</topic><topic>QUBITS</topic><topic>Qubits (quantum computing)</topic><topic>RESONANCE</topic><topic>Rydberg atoms</topic><topic>STRONG INTERACTIONS</topic><topic>Strong interactions (field theory)</topic><topic>TWO-BODY PROBLEM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheinet, P.</creatorcontrib><creatorcontrib>Pham, K.-L</creatorcontrib><creatorcontrib>Pillet, P.</creatorcontrib><creatorcontrib>Beterov, I.I.</creatorcontrib><creatorcontrib>Ashkarin, I.N.</creatorcontrib><creatorcontrib>Tretyakov, D.B.</creatorcontrib><creatorcontrib>Yakshina, E.A.</creatorcontrib><creatorcontrib>Entin, V.M.</creatorcontrib><creatorcontrib>Ryabtsev, I.I.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV</collection><jtitle>Quantum electronics (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheinet, P.</au><au>Pham, K.-L</au><au>Pillet, P.</au><au>Beterov, I.I.</au><au>Ashkarin, I.N.</au><au>Tretyakov, D.B.</au><au>Yakshina, E.A.</au><au>Entin, V.M.</au><au>Ryabtsev, I.I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-body Förster resonance of a new type in Rydberg atoms</atitle><jtitle>Quantum electronics (Woodbury, N.Y.)</jtitle><addtitle>Quantum Electron</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>50</volume><issue>3</issue><spage>213</spage><epage>219</epage><pages>213-219</pages><issn>1063-7818</issn><eissn>1468-4799</eissn><abstract>The three-body Förster resonances 3 × nP3/2(|M|) →nS1/2 + (n + 1)S1/2 + nP3/2(|M*|), controlled by a constant electric field, were realised earlier by the authors in an ensemble of several cold Rydberg Rb atoms. One of the drawbacks of such resonances for potential application in three-qubit quantum gates is the proximity of the two-body Förster resonance 2 × nP3/2 → nS1/2 + (n + 1)S1/2, as well as the possibility of their implementation only for states with values of the principal quantum numbers n ⩽38. A three-body resonance of a new type, 3 × nP3/2 → nS1/2 + (n + 1)S1/2 + nP1/2, which can be realised for arbitrary n, is proposed and analysed. Its specific feature is also that the third atom transits into a state with a different total angular momentum J = 1/2, which has no Stark structure, so that the two-body resonance is completely absent. Numerical calculations showed that for not too strong interaction, it is possible to observe coherent three-body oscillations of the populations of collective states, which is of interest for developing new schemes of three-qubit quantum gates controlled by an electric field.</abstract><cop>Bristol</cop><pub>Kvantovaya Elektronika, Turpion Ltd and IOP Publishing</pub><doi>10.1070/QEL17253</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9292-9735</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7818 |
ispartof | Quantum electronics (Woodbury, N.Y.), 2020-03, Vol.50 (3), p.213-219 |
issn | 1063-7818 1468-4799 |
language | eng |
recordid | cdi_proquest_journals_2377714056 |
source | Institute of Physics Journals |
subjects | ANGULAR MOMENTUM ATOMIC AND MOLECULAR PHYSICS Atomic Physics ELECTRIC FIELDS Förster resonance interaction OSCILLATIONS Physics POTENTIALS QUANTUM NUMBERS Quantum Physics QUBITS Qubits (quantum computing) RESONANCE Rydberg atoms STRONG INTERACTIONS Strong interactions (field theory) TWO-BODY PROBLEM |
title | Three-body Förster resonance of a new type in Rydberg atoms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A00%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-body%20F%C3%B6rster%20resonance%20of%20a%20new%20type%20in%20Rydberg%20atoms&rft.jtitle=Quantum%20electronics%20(Woodbury,%20N.Y.)&rft.au=Cheinet,%20P.&rft.date=2020-03-01&rft.volume=50&rft.issue=3&rft.spage=213&rft.epage=219&rft.pages=213-219&rft.issn=1063-7818&rft.eissn=1468-4799&rft_id=info:doi/10.1070/QEL17253&rft_dat=%3Cproquest_cross%3E2377714056%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377714056&rft_id=info:pmid/&rfr_iscdi=true |