Ge/SiGe multiple quantum well fabrication by reduced-pressure chemical vapor deposition

In this paper we deposit structures comprising a stack of 10 periods made of 15-nm-thick Ge multiple quantum wells (MQWs) enclosed in a 15-nm-thick Si0.2Ge0.8 barrier on SiGe virtual substrates (VSs) featuring different Ge content in the 85%–100% range to investigate the influence of heteroepitaxial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese Journal of Applied Physics 2020-04, Vol.59 (SG), p.SGGK10
Hauptverfasser: Yamamoto, Yuji, Skibitzki, Oliver, Schubert, Markus Andreas, Scuderi, Mario, Reichmann, Felix, Zöllner, Marvin H., De Seta, Monica, Capellini, Giovanni, Tillack, Bernd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue SG
container_start_page SGGK10
container_title Japanese Journal of Applied Physics
container_volume 59
creator Yamamoto, Yuji
Skibitzki, Oliver
Schubert, Markus Andreas
Scuderi, Mario
Reichmann, Felix
Zöllner, Marvin H.
De Seta, Monica
Capellini, Giovanni
Tillack, Bernd
description In this paper we deposit structures comprising a stack of 10 periods made of 15-nm-thick Ge multiple quantum wells (MQWs) enclosed in a 15-nm-thick Si0.2Ge0.8 barrier on SiGe virtual substrates (VSs) featuring different Ge content in the 85%–100% range to investigate the influence of heteroepitaxial strain on Si0.2Ge0.8 and Ge growth. With increasing Ge concentration of the VS, the growth rate of Si0.2Ge0.8 in the MQWs increases. Si incorporation into the Si0.2Ge0.8 layer also becomes slightly higher. However, almost no influence of the growth rate is observed for Ge growth in the MQWs. We argue that increased tensile strain promotes the Si reaction at the surface. In the case of Si0.2Ge0.8 growth on Ge, we observe a smeared interface due to Ge segregation during the growth. Furthermore, we observe that the interface width increases with increasing Ge concentration of the VS. We attribute this observation to the increased segregation of Ge driven by increased strain energy accumulated in the Si0.2Ge0.8 layers. We also observe that the MQW layer "filters out" threading dislocations formed in the VS.
doi_str_mv 10.7567/1347-4065/ab65d0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2377704748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377704748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c271t-70fac5cf8409559a8a79218fbb7529f540175f609240973eb922ffeb27690dcf3</originalsourceid><addsrcrecordid>eNo9kEFLxDAQRoMouK7ePQY8103SpNMeZdFVWPCg4jEk6QS7tNtu0ij7721Z8TTMfI8Z5hFyy9k9qAJWPJeQSVaolbGFqtkZWfyPzsmCMcEzWQlxSa5i3E1toSRfkM8Nrt6aDdIutWMztEgPyezH1NEfbFvqjQ2NM2PT76k90oB1clhnQ8AYU0DqvrCb8pZ-m6EPtMahj81MX5MLb9qIN391ST6eHt_Xz9n2dfOyfthmTgAfM2DeOOV8KVmlVGVKA5XgpbcWlKi8koyD8gWrxARAjnb6wHu0AoqK1c7nS3J32juE_pAwjnrXp7CfTmqRAwCTIMuJYifKhT7GgF4PoelMOGrO9KxPz6707Eqf9OW_NjhjdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377704748</pqid></control><display><type>article</type><title>Ge/SiGe multiple quantum well fabrication by reduced-pressure chemical vapor deposition</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Yamamoto, Yuji ; Skibitzki, Oliver ; Schubert, Markus Andreas ; Scuderi, Mario ; Reichmann, Felix ; Zöllner, Marvin H. ; De Seta, Monica ; Capellini, Giovanni ; Tillack, Bernd</creator><creatorcontrib>Yamamoto, Yuji ; Skibitzki, Oliver ; Schubert, Markus Andreas ; Scuderi, Mario ; Reichmann, Felix ; Zöllner, Marvin H. ; De Seta, Monica ; Capellini, Giovanni ; Tillack, Bernd</creatorcontrib><description>In this paper we deposit structures comprising a stack of 10 periods made of 15-nm-thick Ge multiple quantum wells (MQWs) enclosed in a 15-nm-thick Si0.2Ge0.8 barrier on SiGe virtual substrates (VSs) featuring different Ge content in the 85%–100% range to investigate the influence of heteroepitaxial strain on Si0.2Ge0.8 and Ge growth. With increasing Ge concentration of the VS, the growth rate of Si0.2Ge0.8 in the MQWs increases. Si incorporation into the Si0.2Ge0.8 layer also becomes slightly higher. However, almost no influence of the growth rate is observed for Ge growth in the MQWs. We argue that increased tensile strain promotes the Si reaction at the surface. In the case of Si0.2Ge0.8 growth on Ge, we observe a smeared interface due to Ge segregation during the growth. Furthermore, we observe that the interface width increases with increasing Ge concentration of the VS. We attribute this observation to the increased segregation of Ge driven by increased strain energy accumulated in the Si0.2Ge0.8 layers. We also observe that the MQW layer "filters out" threading dislocations formed in the VS.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.7567/1347-4065/ab65d0</identifier><language>eng</language><publisher>Tokyo: Japanese Journal of Applied Physics</publisher><subject>Chemical vapor deposition ; Germanium ; Quantum wells ; Silicon germanides ; Substrates ; Tensile strain ; Threading dislocations</subject><ispartof>Japanese Journal of Applied Physics, 2020-04, Vol.59 (SG), p.SGGK10</ispartof><rights>Copyright Japanese Journal of Applied Physics Apr 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c271t-70fac5cf8409559a8a79218fbb7529f540175f609240973eb922ffeb27690dcf3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Yamamoto, Yuji</creatorcontrib><creatorcontrib>Skibitzki, Oliver</creatorcontrib><creatorcontrib>Schubert, Markus Andreas</creatorcontrib><creatorcontrib>Scuderi, Mario</creatorcontrib><creatorcontrib>Reichmann, Felix</creatorcontrib><creatorcontrib>Zöllner, Marvin H.</creatorcontrib><creatorcontrib>De Seta, Monica</creatorcontrib><creatorcontrib>Capellini, Giovanni</creatorcontrib><creatorcontrib>Tillack, Bernd</creatorcontrib><title>Ge/SiGe multiple quantum well fabrication by reduced-pressure chemical vapor deposition</title><title>Japanese Journal of Applied Physics</title><description>In this paper we deposit structures comprising a stack of 10 periods made of 15-nm-thick Ge multiple quantum wells (MQWs) enclosed in a 15-nm-thick Si0.2Ge0.8 barrier on SiGe virtual substrates (VSs) featuring different Ge content in the 85%–100% range to investigate the influence of heteroepitaxial strain on Si0.2Ge0.8 and Ge growth. With increasing Ge concentration of the VS, the growth rate of Si0.2Ge0.8 in the MQWs increases. Si incorporation into the Si0.2Ge0.8 layer also becomes slightly higher. However, almost no influence of the growth rate is observed for Ge growth in the MQWs. We argue that increased tensile strain promotes the Si reaction at the surface. In the case of Si0.2Ge0.8 growth on Ge, we observe a smeared interface due to Ge segregation during the growth. Furthermore, we observe that the interface width increases with increasing Ge concentration of the VS. We attribute this observation to the increased segregation of Ge driven by increased strain energy accumulated in the Si0.2Ge0.8 layers. We also observe that the MQW layer "filters out" threading dislocations formed in the VS.</description><subject>Chemical vapor deposition</subject><subject>Germanium</subject><subject>Quantum wells</subject><subject>Silicon germanides</subject><subject>Substrates</subject><subject>Tensile strain</subject><subject>Threading dislocations</subject><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLxDAQRoMouK7ePQY8103SpNMeZdFVWPCg4jEk6QS7tNtu0ij7721Z8TTMfI8Z5hFyy9k9qAJWPJeQSVaolbGFqtkZWfyPzsmCMcEzWQlxSa5i3E1toSRfkM8Nrt6aDdIutWMztEgPyezH1NEfbFvqjQ2NM2PT76k90oB1clhnQ8AYU0DqvrCb8pZ-m6EPtMahj81MX5MLb9qIN391ST6eHt_Xz9n2dfOyfthmTgAfM2DeOOV8KVmlVGVKA5XgpbcWlKi8koyD8gWrxARAjnb6wHu0AoqK1c7nS3J32juE_pAwjnrXp7CfTmqRAwCTIMuJYifKhT7GgF4PoelMOGrO9KxPz6707Eqf9OW_NjhjdQ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Yamamoto, Yuji</creator><creator>Skibitzki, Oliver</creator><creator>Schubert, Markus Andreas</creator><creator>Scuderi, Mario</creator><creator>Reichmann, Felix</creator><creator>Zöllner, Marvin H.</creator><creator>De Seta, Monica</creator><creator>Capellini, Giovanni</creator><creator>Tillack, Bernd</creator><general>Japanese Journal of Applied Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20200401</creationdate><title>Ge/SiGe multiple quantum well fabrication by reduced-pressure chemical vapor deposition</title><author>Yamamoto, Yuji ; Skibitzki, Oliver ; Schubert, Markus Andreas ; Scuderi, Mario ; Reichmann, Felix ; Zöllner, Marvin H. ; De Seta, Monica ; Capellini, Giovanni ; Tillack, Bernd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c271t-70fac5cf8409559a8a79218fbb7529f540175f609240973eb922ffeb27690dcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical vapor deposition</topic><topic>Germanium</topic><topic>Quantum wells</topic><topic>Silicon germanides</topic><topic>Substrates</topic><topic>Tensile strain</topic><topic>Threading dislocations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamamoto, Yuji</creatorcontrib><creatorcontrib>Skibitzki, Oliver</creatorcontrib><creatorcontrib>Schubert, Markus Andreas</creatorcontrib><creatorcontrib>Scuderi, Mario</creatorcontrib><creatorcontrib>Reichmann, Felix</creatorcontrib><creatorcontrib>Zöllner, Marvin H.</creatorcontrib><creatorcontrib>De Seta, Monica</creatorcontrib><creatorcontrib>Capellini, Giovanni</creatorcontrib><creatorcontrib>Tillack, Bernd</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamamoto, Yuji</au><au>Skibitzki, Oliver</au><au>Schubert, Markus Andreas</au><au>Scuderi, Mario</au><au>Reichmann, Felix</au><au>Zöllner, Marvin H.</au><au>De Seta, Monica</au><au>Capellini, Giovanni</au><au>Tillack, Bernd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ge/SiGe multiple quantum well fabrication by reduced-pressure chemical vapor deposition</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>59</volume><issue>SG</issue><spage>SGGK10</spage><pages>SGGK10-</pages><issn>0021-4922</issn><eissn>1347-4065</eissn><abstract>In this paper we deposit structures comprising a stack of 10 periods made of 15-nm-thick Ge multiple quantum wells (MQWs) enclosed in a 15-nm-thick Si0.2Ge0.8 barrier on SiGe virtual substrates (VSs) featuring different Ge content in the 85%–100% range to investigate the influence of heteroepitaxial strain on Si0.2Ge0.8 and Ge growth. With increasing Ge concentration of the VS, the growth rate of Si0.2Ge0.8 in the MQWs increases. Si incorporation into the Si0.2Ge0.8 layer also becomes slightly higher. However, almost no influence of the growth rate is observed for Ge growth in the MQWs. We argue that increased tensile strain promotes the Si reaction at the surface. In the case of Si0.2Ge0.8 growth on Ge, we observe a smeared interface due to Ge segregation during the growth. Furthermore, we observe that the interface width increases with increasing Ge concentration of the VS. We attribute this observation to the increased segregation of Ge driven by increased strain energy accumulated in the Si0.2Ge0.8 layers. We also observe that the MQW layer "filters out" threading dislocations formed in the VS.</abstract><cop>Tokyo</cop><pub>Japanese Journal of Applied Physics</pub><doi>10.7567/1347-4065/ab65d0</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-4922
ispartof Japanese Journal of Applied Physics, 2020-04, Vol.59 (SG), p.SGGK10
issn 0021-4922
1347-4065
language eng
recordid cdi_proquest_journals_2377704748
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Chemical vapor deposition
Germanium
Quantum wells
Silicon germanides
Substrates
Tensile strain
Threading dislocations
title Ge/SiGe multiple quantum well fabrication by reduced-pressure chemical vapor deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A31%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ge/SiGe%20multiple%20quantum%20well%20fabrication%20by%20reduced-pressure%20chemical%20vapor%20deposition&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Yamamoto,%20Yuji&rft.date=2020-04-01&rft.volume=59&rft.issue=SG&rft.spage=SGGK10&rft.pages=SGGK10-&rft.issn=0021-4922&rft.eissn=1347-4065&rft_id=info:doi/10.7567/1347-4065/ab65d0&rft_dat=%3Cproquest_cross%3E2377704748%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377704748&rft_id=info:pmid/&rfr_iscdi=true