Ge/SiGe multiple quantum well fabrication by reduced-pressure chemical vapor deposition
In this paper we deposit structures comprising a stack of 10 periods made of 15-nm-thick Ge multiple quantum wells (MQWs) enclosed in a 15-nm-thick Si0.2Ge0.8 barrier on SiGe virtual substrates (VSs) featuring different Ge content in the 85%–100% range to investigate the influence of heteroepitaxial...
Gespeichert in:
Veröffentlicht in: | Japanese Journal of Applied Physics 2020-04, Vol.59 (SG), p.SGGK10 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | SG |
container_start_page | SGGK10 |
container_title | Japanese Journal of Applied Physics |
container_volume | 59 |
creator | Yamamoto, Yuji Skibitzki, Oliver Schubert, Markus Andreas Scuderi, Mario Reichmann, Felix Zöllner, Marvin H. De Seta, Monica Capellini, Giovanni Tillack, Bernd |
description | In this paper we deposit structures comprising a stack of 10 periods made of 15-nm-thick Ge multiple quantum wells (MQWs) enclosed in a 15-nm-thick Si0.2Ge0.8 barrier on SiGe virtual substrates (VSs) featuring different Ge content in the 85%–100% range to investigate the influence of heteroepitaxial strain on Si0.2Ge0.8 and Ge growth. With increasing Ge concentration of the VS, the growth rate of Si0.2Ge0.8 in the MQWs increases. Si incorporation into the Si0.2Ge0.8 layer also becomes slightly higher. However, almost no influence of the growth rate is observed for Ge growth in the MQWs. We argue that increased tensile strain promotes the Si reaction at the surface. In the case of Si0.2Ge0.8 growth on Ge, we observe a smeared interface due to Ge segregation during the growth. Furthermore, we observe that the interface width increases with increasing Ge concentration of the VS. We attribute this observation to the increased segregation of Ge driven by increased strain energy accumulated in the Si0.2Ge0.8 layers. We also observe that the MQW layer "filters out" threading dislocations formed in the VS. |
doi_str_mv | 10.7567/1347-4065/ab65d0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2377704748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377704748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c271t-70fac5cf8409559a8a79218fbb7529f540175f609240973eb922ffeb27690dcf3</originalsourceid><addsrcrecordid>eNo9kEFLxDAQRoMouK7ePQY8103SpNMeZdFVWPCg4jEk6QS7tNtu0ij7721Z8TTMfI8Z5hFyy9k9qAJWPJeQSVaolbGFqtkZWfyPzsmCMcEzWQlxSa5i3E1toSRfkM8Nrt6aDdIutWMztEgPyezH1NEfbFvqjQ2NM2PT76k90oB1clhnQ8AYU0DqvrCb8pZ-m6EPtMahj81MX5MLb9qIN391ST6eHt_Xz9n2dfOyfthmTgAfM2DeOOV8KVmlVGVKA5XgpbcWlKi8koyD8gWrxARAjnb6wHu0AoqK1c7nS3J32juE_pAwjnrXp7CfTmqRAwCTIMuJYifKhT7GgF4PoelMOGrO9KxPz6707Eqf9OW_NjhjdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377704748</pqid></control><display><type>article</type><title>Ge/SiGe multiple quantum well fabrication by reduced-pressure chemical vapor deposition</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Yamamoto, Yuji ; Skibitzki, Oliver ; Schubert, Markus Andreas ; Scuderi, Mario ; Reichmann, Felix ; Zöllner, Marvin H. ; De Seta, Monica ; Capellini, Giovanni ; Tillack, Bernd</creator><creatorcontrib>Yamamoto, Yuji ; Skibitzki, Oliver ; Schubert, Markus Andreas ; Scuderi, Mario ; Reichmann, Felix ; Zöllner, Marvin H. ; De Seta, Monica ; Capellini, Giovanni ; Tillack, Bernd</creatorcontrib><description>In this paper we deposit structures comprising a stack of 10 periods made of 15-nm-thick Ge multiple quantum wells (MQWs) enclosed in a 15-nm-thick Si0.2Ge0.8 barrier on SiGe virtual substrates (VSs) featuring different Ge content in the 85%–100% range to investigate the influence of heteroepitaxial strain on Si0.2Ge0.8 and Ge growth. With increasing Ge concentration of the VS, the growth rate of Si0.2Ge0.8 in the MQWs increases. Si incorporation into the Si0.2Ge0.8 layer also becomes slightly higher. However, almost no influence of the growth rate is observed for Ge growth in the MQWs. We argue that increased tensile strain promotes the Si reaction at the surface. In the case of Si0.2Ge0.8 growth on Ge, we observe a smeared interface due to Ge segregation during the growth. Furthermore, we observe that the interface width increases with increasing Ge concentration of the VS. We attribute this observation to the increased segregation of Ge driven by increased strain energy accumulated in the Si0.2Ge0.8 layers. We also observe that the MQW layer "filters out" threading dislocations formed in the VS.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.7567/1347-4065/ab65d0</identifier><language>eng</language><publisher>Tokyo: Japanese Journal of Applied Physics</publisher><subject>Chemical vapor deposition ; Germanium ; Quantum wells ; Silicon germanides ; Substrates ; Tensile strain ; Threading dislocations</subject><ispartof>Japanese Journal of Applied Physics, 2020-04, Vol.59 (SG), p.SGGK10</ispartof><rights>Copyright Japanese Journal of Applied Physics Apr 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c271t-70fac5cf8409559a8a79218fbb7529f540175f609240973eb922ffeb27690dcf3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Yamamoto, Yuji</creatorcontrib><creatorcontrib>Skibitzki, Oliver</creatorcontrib><creatorcontrib>Schubert, Markus Andreas</creatorcontrib><creatorcontrib>Scuderi, Mario</creatorcontrib><creatorcontrib>Reichmann, Felix</creatorcontrib><creatorcontrib>Zöllner, Marvin H.</creatorcontrib><creatorcontrib>De Seta, Monica</creatorcontrib><creatorcontrib>Capellini, Giovanni</creatorcontrib><creatorcontrib>Tillack, Bernd</creatorcontrib><title>Ge/SiGe multiple quantum well fabrication by reduced-pressure chemical vapor deposition</title><title>Japanese Journal of Applied Physics</title><description>In this paper we deposit structures comprising a stack of 10 periods made of 15-nm-thick Ge multiple quantum wells (MQWs) enclosed in a 15-nm-thick Si0.2Ge0.8 barrier on SiGe virtual substrates (VSs) featuring different Ge content in the 85%–100% range to investigate the influence of heteroepitaxial strain on Si0.2Ge0.8 and Ge growth. With increasing Ge concentration of the VS, the growth rate of Si0.2Ge0.8 in the MQWs increases. Si incorporation into the Si0.2Ge0.8 layer also becomes slightly higher. However, almost no influence of the growth rate is observed for Ge growth in the MQWs. We argue that increased tensile strain promotes the Si reaction at the surface. In the case of Si0.2Ge0.8 growth on Ge, we observe a smeared interface due to Ge segregation during the growth. Furthermore, we observe that the interface width increases with increasing Ge concentration of the VS. We attribute this observation to the increased segregation of Ge driven by increased strain energy accumulated in the Si0.2Ge0.8 layers. We also observe that the MQW layer "filters out" threading dislocations formed in the VS.</description><subject>Chemical vapor deposition</subject><subject>Germanium</subject><subject>Quantum wells</subject><subject>Silicon germanides</subject><subject>Substrates</subject><subject>Tensile strain</subject><subject>Threading dislocations</subject><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLxDAQRoMouK7ePQY8103SpNMeZdFVWPCg4jEk6QS7tNtu0ij7721Z8TTMfI8Z5hFyy9k9qAJWPJeQSVaolbGFqtkZWfyPzsmCMcEzWQlxSa5i3E1toSRfkM8Nrt6aDdIutWMztEgPyezH1NEfbFvqjQ2NM2PT76k90oB1clhnQ8AYU0DqvrCb8pZ-m6EPtMahj81MX5MLb9qIN391ST6eHt_Xz9n2dfOyfthmTgAfM2DeOOV8KVmlVGVKA5XgpbcWlKi8koyD8gWrxARAjnb6wHu0AoqK1c7nS3J32juE_pAwjnrXp7CfTmqRAwCTIMuJYifKhT7GgF4PoelMOGrO9KxPz6707Eqf9OW_NjhjdQ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Yamamoto, Yuji</creator><creator>Skibitzki, Oliver</creator><creator>Schubert, Markus Andreas</creator><creator>Scuderi, Mario</creator><creator>Reichmann, Felix</creator><creator>Zöllner, Marvin H.</creator><creator>De Seta, Monica</creator><creator>Capellini, Giovanni</creator><creator>Tillack, Bernd</creator><general>Japanese Journal of Applied Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20200401</creationdate><title>Ge/SiGe multiple quantum well fabrication by reduced-pressure chemical vapor deposition</title><author>Yamamoto, Yuji ; Skibitzki, Oliver ; Schubert, Markus Andreas ; Scuderi, Mario ; Reichmann, Felix ; Zöllner, Marvin H. ; De Seta, Monica ; Capellini, Giovanni ; Tillack, Bernd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c271t-70fac5cf8409559a8a79218fbb7529f540175f609240973eb922ffeb27690dcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical vapor deposition</topic><topic>Germanium</topic><topic>Quantum wells</topic><topic>Silicon germanides</topic><topic>Substrates</topic><topic>Tensile strain</topic><topic>Threading dislocations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamamoto, Yuji</creatorcontrib><creatorcontrib>Skibitzki, Oliver</creatorcontrib><creatorcontrib>Schubert, Markus Andreas</creatorcontrib><creatorcontrib>Scuderi, Mario</creatorcontrib><creatorcontrib>Reichmann, Felix</creatorcontrib><creatorcontrib>Zöllner, Marvin H.</creatorcontrib><creatorcontrib>De Seta, Monica</creatorcontrib><creatorcontrib>Capellini, Giovanni</creatorcontrib><creatorcontrib>Tillack, Bernd</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamamoto, Yuji</au><au>Skibitzki, Oliver</au><au>Schubert, Markus Andreas</au><au>Scuderi, Mario</au><au>Reichmann, Felix</au><au>Zöllner, Marvin H.</au><au>De Seta, Monica</au><au>Capellini, Giovanni</au><au>Tillack, Bernd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ge/SiGe multiple quantum well fabrication by reduced-pressure chemical vapor deposition</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>59</volume><issue>SG</issue><spage>SGGK10</spage><pages>SGGK10-</pages><issn>0021-4922</issn><eissn>1347-4065</eissn><abstract>In this paper we deposit structures comprising a stack of 10 periods made of 15-nm-thick Ge multiple quantum wells (MQWs) enclosed in a 15-nm-thick Si0.2Ge0.8 barrier on SiGe virtual substrates (VSs) featuring different Ge content in the 85%–100% range to investigate the influence of heteroepitaxial strain on Si0.2Ge0.8 and Ge growth. With increasing Ge concentration of the VS, the growth rate of Si0.2Ge0.8 in the MQWs increases. Si incorporation into the Si0.2Ge0.8 layer also becomes slightly higher. However, almost no influence of the growth rate is observed for Ge growth in the MQWs. We argue that increased tensile strain promotes the Si reaction at the surface. In the case of Si0.2Ge0.8 growth on Ge, we observe a smeared interface due to Ge segregation during the growth. Furthermore, we observe that the interface width increases with increasing Ge concentration of the VS. We attribute this observation to the increased segregation of Ge driven by increased strain energy accumulated in the Si0.2Ge0.8 layers. We also observe that the MQW layer "filters out" threading dislocations formed in the VS.</abstract><cop>Tokyo</cop><pub>Japanese Journal of Applied Physics</pub><doi>10.7567/1347-4065/ab65d0</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-4922 |
ispartof | Japanese Journal of Applied Physics, 2020-04, Vol.59 (SG), p.SGGK10 |
issn | 0021-4922 1347-4065 |
language | eng |
recordid | cdi_proquest_journals_2377704748 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Chemical vapor deposition Germanium Quantum wells Silicon germanides Substrates Tensile strain Threading dislocations |
title | Ge/SiGe multiple quantum well fabrication by reduced-pressure chemical vapor deposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A31%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ge/SiGe%20multiple%20quantum%20well%20fabrication%20by%20reduced-pressure%20chemical%20vapor%20deposition&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Yamamoto,%20Yuji&rft.date=2020-04-01&rft.volume=59&rft.issue=SG&rft.spage=SGGK10&rft.pages=SGGK10-&rft.issn=0021-4922&rft.eissn=1347-4065&rft_id=info:doi/10.7567/1347-4065/ab65d0&rft_dat=%3Cproquest_cross%3E2377704748%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377704748&rft_id=info:pmid/&rfr_iscdi=true |