Prediction Mapping Through Maxent Modeling Paves the Way for the Conservation of Rhododendron arboreum in Uttarakhand Himalayas
In the middle Himalayas, Rhododendron arboreum is shrinking due to low seed viability, poor regeneration, habitat degradation and fragmentation, habitat distortion, and species invasion. Further, developmental activities, the encroachment of forestland for agriculture, urbanization, and industrial e...
Gespeichert in:
Veröffentlicht in: | Journal of the Indian Society of Remote Sensing 2020-03, Vol.48 (3), p.411-422 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 422 |
---|---|
container_issue | 3 |
container_start_page | 411 |
container_title | Journal of the Indian Society of Remote Sensing |
container_volume | 48 |
creator | Bhandari, Maneesh S. Meena, Rajendra K. Shankhwar, Rajeev Shekhar, Chander Saxena, Jalaj Kant, Rama Pandey, Vijay V. Barthwal, Santan Pandey, Shailesh Chandra, Girish Ginwal, Harish S. |
description | In the middle Himalayas,
Rhododendron arboreum
is shrinking due to low seed viability, poor regeneration, habitat degradation and fragmentation, habitat distortion, and species invasion. Further, developmental activities, the encroachment of forestland for agriculture, urbanization, and industrial expansion put additional burdens on its natural distribution. The present work focused on the prediction of
R. arboreum
distribution in Uttarakhand Himalayas using the Maxent model. In total, 1077 geospatial data were recorded, 300 well-distributed geo-coordinates were used to predict and estimate the distribution, while the rest were used to validate the model. The Maxent model generated AUC curve with an accurate and significant value of 0.886 ± 0.023. Bioclimatic variables such as temperature seasonality (Bio 4), annual temperature range (Bio 7), altitude (Alt), annual precipitation (Bio 12), and precipitation seasonality (Bio 15) contributed significantly to predict the distribution, as revealed by the Jackknife test. Within the total geographical area of 617.48 km
2
under
R. arboreum
distribution as shown over Landsat 8 generated map, 167.48 km
2
was found to be very dense, 320.75 km
2
was moderately dense, and 129.25 km
2
was open. The estimated distributed area was 2733.08 km
2
. The satellite-based mapping and model-based prediction of
R. arboreum
are of paramount importance to the foresters and researchers for species conservation, management, and utilization in a sustainable manner. |
doi_str_mv | 10.1007/s12524-019-01089-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2377703961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377703961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-66d048f004afa69c36cb343f63f0cf5032548d443ece58348ecb6c6c4b03e9223</originalsourceid><addsrcrecordid>eNp9UF1LwzAULaLgnP4BnwI-V2-TNG0fZagTNhyyoW8hTZO1c0tm0g735F83WwXffLifnHPu5UTRdQK3CUB25xOcYhpDUoSAPOSTaABFRmMCwE5Dj9M0Zgzez6ML71dhSdMED6LvmVNVI9vGGjQV221jlmheO9st6zB_KdOiqa3U-rCfiZ3yqK0VehN7pK079iNrvHI7cZSwGr3WtgoMU7kwC1dap7oNagxatK1w4qMWpkLjZiPWYi_8ZXSmxdqrq986jBaPD_PROJ68PD2P7iexJEnRhs8roLkGoEILVkjCZEko0YxokDoFglOaV5QSJVWaE5orWTLJJC2BqAJjMoxuet2ts5-d8i1f2c6ZcJJjkmUZkIIlAYV7lHTWe6c037rwqdvzBPjBaN4bzYPR_Gg0h0AiPckHsFkq9yf9D-sHcTaCTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377703961</pqid></control><display><type>article</type><title>Prediction Mapping Through Maxent Modeling Paves the Way for the Conservation of Rhododendron arboreum in Uttarakhand Himalayas</title><source>SpringerLink Journals</source><creator>Bhandari, Maneesh S. ; Meena, Rajendra K. ; Shankhwar, Rajeev ; Shekhar, Chander ; Saxena, Jalaj ; Kant, Rama ; Pandey, Vijay V. ; Barthwal, Santan ; Pandey, Shailesh ; Chandra, Girish ; Ginwal, Harish S.</creator><creatorcontrib>Bhandari, Maneesh S. ; Meena, Rajendra K. ; Shankhwar, Rajeev ; Shekhar, Chander ; Saxena, Jalaj ; Kant, Rama ; Pandey, Vijay V. ; Barthwal, Santan ; Pandey, Shailesh ; Chandra, Girish ; Ginwal, Harish S.</creatorcontrib><description>In the middle Himalayas,
Rhododendron arboreum
is shrinking due to low seed viability, poor regeneration, habitat degradation and fragmentation, habitat distortion, and species invasion. Further, developmental activities, the encroachment of forestland for agriculture, urbanization, and industrial expansion put additional burdens on its natural distribution. The present work focused on the prediction of
R. arboreum
distribution in Uttarakhand Himalayas using the Maxent model. In total, 1077 geospatial data were recorded, 300 well-distributed geo-coordinates were used to predict and estimate the distribution, while the rest were used to validate the model. The Maxent model generated AUC curve with an accurate and significant value of 0.886 ± 0.023. Bioclimatic variables such as temperature seasonality (Bio 4), annual temperature range (Bio 7), altitude (Alt), annual precipitation (Bio 12), and precipitation seasonality (Bio 15) contributed significantly to predict the distribution, as revealed by the Jackknife test. Within the total geographical area of 617.48 km
2
under
R. arboreum
distribution as shown over Landsat 8 generated map, 167.48 km
2
was found to be very dense, 320.75 km
2
was moderately dense, and 129.25 km
2
was open. The estimated distributed area was 2733.08 km
2
. The satellite-based mapping and model-based prediction of
R. arboreum
are of paramount importance to the foresters and researchers for species conservation, management, and utilization in a sustainable manner.</description><identifier>ISSN: 0255-660X</identifier><identifier>EISSN: 0974-3006</identifier><identifier>DOI: 10.1007/s12524-019-01089-0</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Agricultural management ; Annual precipitation ; Bioclimatology ; Earth and Environmental Science ; Earth Sciences ; Encroachment ; Environmental degradation ; Invasive species ; Landsat ; Landsat satellites ; Mapping ; Regeneration ; Remote sensing ; Remote Sensing/Photogrammetry ; Research Article ; Seasonal variations ; Spatial data ; Urbanization ; Viability ; Wildlife conservation</subject><ispartof>Journal of the Indian Society of Remote Sensing, 2020-03, Vol.48 (3), p.411-422</ispartof><rights>Indian Society of Remote Sensing 2019</rights><rights>2019© Indian Society of Remote Sensing 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-66d048f004afa69c36cb343f63f0cf5032548d443ece58348ecb6c6c4b03e9223</citedby><cites>FETCH-LOGICAL-c319t-66d048f004afa69c36cb343f63f0cf5032548d443ece58348ecb6c6c4b03e9223</cites><orcidid>0000-0002-7069-7048</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12524-019-01089-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12524-019-01089-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Bhandari, Maneesh S.</creatorcontrib><creatorcontrib>Meena, Rajendra K.</creatorcontrib><creatorcontrib>Shankhwar, Rajeev</creatorcontrib><creatorcontrib>Shekhar, Chander</creatorcontrib><creatorcontrib>Saxena, Jalaj</creatorcontrib><creatorcontrib>Kant, Rama</creatorcontrib><creatorcontrib>Pandey, Vijay V.</creatorcontrib><creatorcontrib>Barthwal, Santan</creatorcontrib><creatorcontrib>Pandey, Shailesh</creatorcontrib><creatorcontrib>Chandra, Girish</creatorcontrib><creatorcontrib>Ginwal, Harish S.</creatorcontrib><title>Prediction Mapping Through Maxent Modeling Paves the Way for the Conservation of Rhododendron arboreum in Uttarakhand Himalayas</title><title>Journal of the Indian Society of Remote Sensing</title><addtitle>J Indian Soc Remote Sens</addtitle><description>In the middle Himalayas,
Rhododendron arboreum
is shrinking due to low seed viability, poor regeneration, habitat degradation and fragmentation, habitat distortion, and species invasion. Further, developmental activities, the encroachment of forestland for agriculture, urbanization, and industrial expansion put additional burdens on its natural distribution. The present work focused on the prediction of
R. arboreum
distribution in Uttarakhand Himalayas using the Maxent model. In total, 1077 geospatial data were recorded, 300 well-distributed geo-coordinates were used to predict and estimate the distribution, while the rest were used to validate the model. The Maxent model generated AUC curve with an accurate and significant value of 0.886 ± 0.023. Bioclimatic variables such as temperature seasonality (Bio 4), annual temperature range (Bio 7), altitude (Alt), annual precipitation (Bio 12), and precipitation seasonality (Bio 15) contributed significantly to predict the distribution, as revealed by the Jackknife test. Within the total geographical area of 617.48 km
2
under
R. arboreum
distribution as shown over Landsat 8 generated map, 167.48 km
2
was found to be very dense, 320.75 km
2
was moderately dense, and 129.25 km
2
was open. The estimated distributed area was 2733.08 km
2
. The satellite-based mapping and model-based prediction of
R. arboreum
are of paramount importance to the foresters and researchers for species conservation, management, and utilization in a sustainable manner.</description><subject>Agricultural management</subject><subject>Annual precipitation</subject><subject>Bioclimatology</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Encroachment</subject><subject>Environmental degradation</subject><subject>Invasive species</subject><subject>Landsat</subject><subject>Landsat satellites</subject><subject>Mapping</subject><subject>Regeneration</subject><subject>Remote sensing</subject><subject>Remote Sensing/Photogrammetry</subject><subject>Research Article</subject><subject>Seasonal variations</subject><subject>Spatial data</subject><subject>Urbanization</subject><subject>Viability</subject><subject>Wildlife conservation</subject><issn>0255-660X</issn><issn>0974-3006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UF1LwzAULaLgnP4BnwI-V2-TNG0fZagTNhyyoW8hTZO1c0tm0g735F83WwXffLifnHPu5UTRdQK3CUB25xOcYhpDUoSAPOSTaABFRmMCwE5Dj9M0Zgzez6ML71dhSdMED6LvmVNVI9vGGjQV221jlmheO9st6zB_KdOiqa3U-rCfiZ3yqK0VehN7pK079iNrvHI7cZSwGr3WtgoMU7kwC1dap7oNagxatK1w4qMWpkLjZiPWYi_8ZXSmxdqrq986jBaPD_PROJ68PD2P7iexJEnRhs8roLkGoEILVkjCZEko0YxokDoFglOaV5QSJVWaE5orWTLJJC2BqAJjMoxuet2ts5-d8i1f2c6ZcJJjkmUZkIIlAYV7lHTWe6c037rwqdvzBPjBaN4bzYPR_Gg0h0AiPckHsFkq9yf9D-sHcTaCTQ</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Bhandari, Maneesh S.</creator><creator>Meena, Rajendra K.</creator><creator>Shankhwar, Rajeev</creator><creator>Shekhar, Chander</creator><creator>Saxena, Jalaj</creator><creator>Kant, Rama</creator><creator>Pandey, Vijay V.</creator><creator>Barthwal, Santan</creator><creator>Pandey, Shailesh</creator><creator>Chandra, Girish</creator><creator>Ginwal, Harish S.</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7069-7048</orcidid></search><sort><creationdate>20200301</creationdate><title>Prediction Mapping Through Maxent Modeling Paves the Way for the Conservation of Rhododendron arboreum in Uttarakhand Himalayas</title><author>Bhandari, Maneesh S. ; Meena, Rajendra K. ; Shankhwar, Rajeev ; Shekhar, Chander ; Saxena, Jalaj ; Kant, Rama ; Pandey, Vijay V. ; Barthwal, Santan ; Pandey, Shailesh ; Chandra, Girish ; Ginwal, Harish S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-66d048f004afa69c36cb343f63f0cf5032548d443ece58348ecb6c6c4b03e9223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agricultural management</topic><topic>Annual precipitation</topic><topic>Bioclimatology</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Encroachment</topic><topic>Environmental degradation</topic><topic>Invasive species</topic><topic>Landsat</topic><topic>Landsat satellites</topic><topic>Mapping</topic><topic>Regeneration</topic><topic>Remote sensing</topic><topic>Remote Sensing/Photogrammetry</topic><topic>Research Article</topic><topic>Seasonal variations</topic><topic>Spatial data</topic><topic>Urbanization</topic><topic>Viability</topic><topic>Wildlife conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhandari, Maneesh S.</creatorcontrib><creatorcontrib>Meena, Rajendra K.</creatorcontrib><creatorcontrib>Shankhwar, Rajeev</creatorcontrib><creatorcontrib>Shekhar, Chander</creatorcontrib><creatorcontrib>Saxena, Jalaj</creatorcontrib><creatorcontrib>Kant, Rama</creatorcontrib><creatorcontrib>Pandey, Vijay V.</creatorcontrib><creatorcontrib>Barthwal, Santan</creatorcontrib><creatorcontrib>Pandey, Shailesh</creatorcontrib><creatorcontrib>Chandra, Girish</creatorcontrib><creatorcontrib>Ginwal, Harish S.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Indian Society of Remote Sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhandari, Maneesh S.</au><au>Meena, Rajendra K.</au><au>Shankhwar, Rajeev</au><au>Shekhar, Chander</au><au>Saxena, Jalaj</au><au>Kant, Rama</au><au>Pandey, Vijay V.</au><au>Barthwal, Santan</au><au>Pandey, Shailesh</au><au>Chandra, Girish</au><au>Ginwal, Harish S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction Mapping Through Maxent Modeling Paves the Way for the Conservation of Rhododendron arboreum in Uttarakhand Himalayas</atitle><jtitle>Journal of the Indian Society of Remote Sensing</jtitle><stitle>J Indian Soc Remote Sens</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>48</volume><issue>3</issue><spage>411</spage><epage>422</epage><pages>411-422</pages><issn>0255-660X</issn><eissn>0974-3006</eissn><abstract>In the middle Himalayas,
Rhododendron arboreum
is shrinking due to low seed viability, poor regeneration, habitat degradation and fragmentation, habitat distortion, and species invasion. Further, developmental activities, the encroachment of forestland for agriculture, urbanization, and industrial expansion put additional burdens on its natural distribution. The present work focused on the prediction of
R. arboreum
distribution in Uttarakhand Himalayas using the Maxent model. In total, 1077 geospatial data were recorded, 300 well-distributed geo-coordinates were used to predict and estimate the distribution, while the rest were used to validate the model. The Maxent model generated AUC curve with an accurate and significant value of 0.886 ± 0.023. Bioclimatic variables such as temperature seasonality (Bio 4), annual temperature range (Bio 7), altitude (Alt), annual precipitation (Bio 12), and precipitation seasonality (Bio 15) contributed significantly to predict the distribution, as revealed by the Jackknife test. Within the total geographical area of 617.48 km
2
under
R. arboreum
distribution as shown over Landsat 8 generated map, 167.48 km
2
was found to be very dense, 320.75 km
2
was moderately dense, and 129.25 km
2
was open. The estimated distributed area was 2733.08 km
2
. The satellite-based mapping and model-based prediction of
R. arboreum
are of paramount importance to the foresters and researchers for species conservation, management, and utilization in a sustainable manner.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12524-019-01089-0</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7069-7048</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0255-660X |
ispartof | Journal of the Indian Society of Remote Sensing, 2020-03, Vol.48 (3), p.411-422 |
issn | 0255-660X 0974-3006 |
language | eng |
recordid | cdi_proquest_journals_2377703961 |
source | SpringerLink Journals |
subjects | Agricultural management Annual precipitation Bioclimatology Earth and Environmental Science Earth Sciences Encroachment Environmental degradation Invasive species Landsat Landsat satellites Mapping Regeneration Remote sensing Remote Sensing/Photogrammetry Research Article Seasonal variations Spatial data Urbanization Viability Wildlife conservation |
title | Prediction Mapping Through Maxent Modeling Paves the Way for the Conservation of Rhododendron arboreum in Uttarakhand Himalayas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A22%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20Mapping%20Through%20Maxent%20Modeling%20Paves%20the%20Way%20for%20the%20Conservation%20of%20Rhododendron%20arboreum%20in%20Uttarakhand%20Himalayas&rft.jtitle=Journal%20of%20the%20Indian%20Society%20of%20Remote%20Sensing&rft.au=Bhandari,%20Maneesh%20S.&rft.date=2020-03-01&rft.volume=48&rft.issue=3&rft.spage=411&rft.epage=422&rft.pages=411-422&rft.issn=0255-660X&rft.eissn=0974-3006&rft_id=info:doi/10.1007/s12524-019-01089-0&rft_dat=%3Cproquest_cross%3E2377703961%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377703961&rft_id=info:pmid/&rfr_iscdi=true |