Prediction Mapping Through Maxent Modeling Paves the Way for the Conservation of Rhododendron arboreum in Uttarakhand Himalayas

In the middle Himalayas, Rhododendron arboreum is shrinking due to low seed viability, poor regeneration, habitat degradation and fragmentation, habitat distortion, and species invasion. Further, developmental activities, the encroachment of forestland for agriculture, urbanization, and industrial e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Indian Society of Remote Sensing 2020-03, Vol.48 (3), p.411-422
Hauptverfasser: Bhandari, Maneesh S., Meena, Rajendra K., Shankhwar, Rajeev, Shekhar, Chander, Saxena, Jalaj, Kant, Rama, Pandey, Vijay V., Barthwal, Santan, Pandey, Shailesh, Chandra, Girish, Ginwal, Harish S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 422
container_issue 3
container_start_page 411
container_title Journal of the Indian Society of Remote Sensing
container_volume 48
creator Bhandari, Maneesh S.
Meena, Rajendra K.
Shankhwar, Rajeev
Shekhar, Chander
Saxena, Jalaj
Kant, Rama
Pandey, Vijay V.
Barthwal, Santan
Pandey, Shailesh
Chandra, Girish
Ginwal, Harish S.
description In the middle Himalayas, Rhododendron arboreum is shrinking due to low seed viability, poor regeneration, habitat degradation and fragmentation, habitat distortion, and species invasion. Further, developmental activities, the encroachment of forestland for agriculture, urbanization, and industrial expansion put additional burdens on its natural distribution. The present work focused on the prediction of R. arboreum distribution in Uttarakhand Himalayas using the Maxent model. In total, 1077 geospatial data were recorded, 300 well-distributed geo-coordinates were used to predict and estimate the distribution, while the rest were used to validate the model. The Maxent model generated AUC curve with an accurate and significant value of 0.886 ± 0.023. Bioclimatic variables such as temperature seasonality (Bio 4), annual temperature range (Bio 7), altitude (Alt), annual precipitation (Bio 12), and precipitation seasonality (Bio 15) contributed significantly to predict the distribution, as revealed by the Jackknife test. Within the total geographical area of 617.48 km 2 under R. arboreum distribution as shown over Landsat 8 generated map, 167.48 km 2 was found to be very dense, 320.75 km 2 was moderately dense, and 129.25 km 2 was open. The estimated distributed area was 2733.08 km 2 . The satellite-based mapping and model-based prediction of R. arboreum are of paramount importance to the foresters and researchers for species conservation, management, and utilization in a sustainable manner.
doi_str_mv 10.1007/s12524-019-01089-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2377703961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377703961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-66d048f004afa69c36cb343f63f0cf5032548d443ece58348ecb6c6c4b03e9223</originalsourceid><addsrcrecordid>eNp9UF1LwzAULaLgnP4BnwI-V2-TNG0fZagTNhyyoW8hTZO1c0tm0g735F83WwXffLifnHPu5UTRdQK3CUB25xOcYhpDUoSAPOSTaABFRmMCwE5Dj9M0Zgzez6ML71dhSdMED6LvmVNVI9vGGjQV221jlmheO9st6zB_KdOiqa3U-rCfiZ3yqK0VehN7pK079iNrvHI7cZSwGr3WtgoMU7kwC1dap7oNagxatK1w4qMWpkLjZiPWYi_8ZXSmxdqrq986jBaPD_PROJ68PD2P7iexJEnRhs8roLkGoEILVkjCZEko0YxokDoFglOaV5QSJVWaE5orWTLJJC2BqAJjMoxuet2ts5-d8i1f2c6ZcJJjkmUZkIIlAYV7lHTWe6c037rwqdvzBPjBaN4bzYPR_Gg0h0AiPckHsFkq9yf9D-sHcTaCTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377703961</pqid></control><display><type>article</type><title>Prediction Mapping Through Maxent Modeling Paves the Way for the Conservation of Rhododendron arboreum in Uttarakhand Himalayas</title><source>SpringerLink Journals</source><creator>Bhandari, Maneesh S. ; Meena, Rajendra K. ; Shankhwar, Rajeev ; Shekhar, Chander ; Saxena, Jalaj ; Kant, Rama ; Pandey, Vijay V. ; Barthwal, Santan ; Pandey, Shailesh ; Chandra, Girish ; Ginwal, Harish S.</creator><creatorcontrib>Bhandari, Maneesh S. ; Meena, Rajendra K. ; Shankhwar, Rajeev ; Shekhar, Chander ; Saxena, Jalaj ; Kant, Rama ; Pandey, Vijay V. ; Barthwal, Santan ; Pandey, Shailesh ; Chandra, Girish ; Ginwal, Harish S.</creatorcontrib><description>In the middle Himalayas, Rhododendron arboreum is shrinking due to low seed viability, poor regeneration, habitat degradation and fragmentation, habitat distortion, and species invasion. Further, developmental activities, the encroachment of forestland for agriculture, urbanization, and industrial expansion put additional burdens on its natural distribution. The present work focused on the prediction of R. arboreum distribution in Uttarakhand Himalayas using the Maxent model. In total, 1077 geospatial data were recorded, 300 well-distributed geo-coordinates were used to predict and estimate the distribution, while the rest were used to validate the model. The Maxent model generated AUC curve with an accurate and significant value of 0.886 ± 0.023. Bioclimatic variables such as temperature seasonality (Bio 4), annual temperature range (Bio 7), altitude (Alt), annual precipitation (Bio 12), and precipitation seasonality (Bio 15) contributed significantly to predict the distribution, as revealed by the Jackknife test. Within the total geographical area of 617.48 km 2 under R. arboreum distribution as shown over Landsat 8 generated map, 167.48 km 2 was found to be very dense, 320.75 km 2 was moderately dense, and 129.25 km 2 was open. The estimated distributed area was 2733.08 km 2 . The satellite-based mapping and model-based prediction of R. arboreum are of paramount importance to the foresters and researchers for species conservation, management, and utilization in a sustainable manner.</description><identifier>ISSN: 0255-660X</identifier><identifier>EISSN: 0974-3006</identifier><identifier>DOI: 10.1007/s12524-019-01089-0</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Agricultural management ; Annual precipitation ; Bioclimatology ; Earth and Environmental Science ; Earth Sciences ; Encroachment ; Environmental degradation ; Invasive species ; Landsat ; Landsat satellites ; Mapping ; Regeneration ; Remote sensing ; Remote Sensing/Photogrammetry ; Research Article ; Seasonal variations ; Spatial data ; Urbanization ; Viability ; Wildlife conservation</subject><ispartof>Journal of the Indian Society of Remote Sensing, 2020-03, Vol.48 (3), p.411-422</ispartof><rights>Indian Society of Remote Sensing 2019</rights><rights>2019© Indian Society of Remote Sensing 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-66d048f004afa69c36cb343f63f0cf5032548d443ece58348ecb6c6c4b03e9223</citedby><cites>FETCH-LOGICAL-c319t-66d048f004afa69c36cb343f63f0cf5032548d443ece58348ecb6c6c4b03e9223</cites><orcidid>0000-0002-7069-7048</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12524-019-01089-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12524-019-01089-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Bhandari, Maneesh S.</creatorcontrib><creatorcontrib>Meena, Rajendra K.</creatorcontrib><creatorcontrib>Shankhwar, Rajeev</creatorcontrib><creatorcontrib>Shekhar, Chander</creatorcontrib><creatorcontrib>Saxena, Jalaj</creatorcontrib><creatorcontrib>Kant, Rama</creatorcontrib><creatorcontrib>Pandey, Vijay V.</creatorcontrib><creatorcontrib>Barthwal, Santan</creatorcontrib><creatorcontrib>Pandey, Shailesh</creatorcontrib><creatorcontrib>Chandra, Girish</creatorcontrib><creatorcontrib>Ginwal, Harish S.</creatorcontrib><title>Prediction Mapping Through Maxent Modeling Paves the Way for the Conservation of Rhododendron arboreum in Uttarakhand Himalayas</title><title>Journal of the Indian Society of Remote Sensing</title><addtitle>J Indian Soc Remote Sens</addtitle><description>In the middle Himalayas, Rhododendron arboreum is shrinking due to low seed viability, poor regeneration, habitat degradation and fragmentation, habitat distortion, and species invasion. Further, developmental activities, the encroachment of forestland for agriculture, urbanization, and industrial expansion put additional burdens on its natural distribution. The present work focused on the prediction of R. arboreum distribution in Uttarakhand Himalayas using the Maxent model. In total, 1077 geospatial data were recorded, 300 well-distributed geo-coordinates were used to predict and estimate the distribution, while the rest were used to validate the model. The Maxent model generated AUC curve with an accurate and significant value of 0.886 ± 0.023. Bioclimatic variables such as temperature seasonality (Bio 4), annual temperature range (Bio 7), altitude (Alt), annual precipitation (Bio 12), and precipitation seasonality (Bio 15) contributed significantly to predict the distribution, as revealed by the Jackknife test. Within the total geographical area of 617.48 km 2 under R. arboreum distribution as shown over Landsat 8 generated map, 167.48 km 2 was found to be very dense, 320.75 km 2 was moderately dense, and 129.25 km 2 was open. The estimated distributed area was 2733.08 km 2 . The satellite-based mapping and model-based prediction of R. arboreum are of paramount importance to the foresters and researchers for species conservation, management, and utilization in a sustainable manner.</description><subject>Agricultural management</subject><subject>Annual precipitation</subject><subject>Bioclimatology</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Encroachment</subject><subject>Environmental degradation</subject><subject>Invasive species</subject><subject>Landsat</subject><subject>Landsat satellites</subject><subject>Mapping</subject><subject>Regeneration</subject><subject>Remote sensing</subject><subject>Remote Sensing/Photogrammetry</subject><subject>Research Article</subject><subject>Seasonal variations</subject><subject>Spatial data</subject><subject>Urbanization</subject><subject>Viability</subject><subject>Wildlife conservation</subject><issn>0255-660X</issn><issn>0974-3006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UF1LwzAULaLgnP4BnwI-V2-TNG0fZagTNhyyoW8hTZO1c0tm0g735F83WwXffLifnHPu5UTRdQK3CUB25xOcYhpDUoSAPOSTaABFRmMCwE5Dj9M0Zgzez6ML71dhSdMED6LvmVNVI9vGGjQV221jlmheO9st6zB_KdOiqa3U-rCfiZ3yqK0VehN7pK079iNrvHI7cZSwGr3WtgoMU7kwC1dap7oNagxatK1w4qMWpkLjZiPWYi_8ZXSmxdqrq986jBaPD_PROJ68PD2P7iexJEnRhs8roLkGoEILVkjCZEko0YxokDoFglOaV5QSJVWaE5orWTLJJC2BqAJjMoxuet2ts5-d8i1f2c6ZcJJjkmUZkIIlAYV7lHTWe6c037rwqdvzBPjBaN4bzYPR_Gg0h0AiPckHsFkq9yf9D-sHcTaCTQ</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Bhandari, Maneesh S.</creator><creator>Meena, Rajendra K.</creator><creator>Shankhwar, Rajeev</creator><creator>Shekhar, Chander</creator><creator>Saxena, Jalaj</creator><creator>Kant, Rama</creator><creator>Pandey, Vijay V.</creator><creator>Barthwal, Santan</creator><creator>Pandey, Shailesh</creator><creator>Chandra, Girish</creator><creator>Ginwal, Harish S.</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7069-7048</orcidid></search><sort><creationdate>20200301</creationdate><title>Prediction Mapping Through Maxent Modeling Paves the Way for the Conservation of Rhododendron arboreum in Uttarakhand Himalayas</title><author>Bhandari, Maneesh S. ; Meena, Rajendra K. ; Shankhwar, Rajeev ; Shekhar, Chander ; Saxena, Jalaj ; Kant, Rama ; Pandey, Vijay V. ; Barthwal, Santan ; Pandey, Shailesh ; Chandra, Girish ; Ginwal, Harish S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-66d048f004afa69c36cb343f63f0cf5032548d443ece58348ecb6c6c4b03e9223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agricultural management</topic><topic>Annual precipitation</topic><topic>Bioclimatology</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Encroachment</topic><topic>Environmental degradation</topic><topic>Invasive species</topic><topic>Landsat</topic><topic>Landsat satellites</topic><topic>Mapping</topic><topic>Regeneration</topic><topic>Remote sensing</topic><topic>Remote Sensing/Photogrammetry</topic><topic>Research Article</topic><topic>Seasonal variations</topic><topic>Spatial data</topic><topic>Urbanization</topic><topic>Viability</topic><topic>Wildlife conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhandari, Maneesh S.</creatorcontrib><creatorcontrib>Meena, Rajendra K.</creatorcontrib><creatorcontrib>Shankhwar, Rajeev</creatorcontrib><creatorcontrib>Shekhar, Chander</creatorcontrib><creatorcontrib>Saxena, Jalaj</creatorcontrib><creatorcontrib>Kant, Rama</creatorcontrib><creatorcontrib>Pandey, Vijay V.</creatorcontrib><creatorcontrib>Barthwal, Santan</creatorcontrib><creatorcontrib>Pandey, Shailesh</creatorcontrib><creatorcontrib>Chandra, Girish</creatorcontrib><creatorcontrib>Ginwal, Harish S.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Indian Society of Remote Sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhandari, Maneesh S.</au><au>Meena, Rajendra K.</au><au>Shankhwar, Rajeev</au><au>Shekhar, Chander</au><au>Saxena, Jalaj</au><au>Kant, Rama</au><au>Pandey, Vijay V.</au><au>Barthwal, Santan</au><au>Pandey, Shailesh</au><au>Chandra, Girish</au><au>Ginwal, Harish S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction Mapping Through Maxent Modeling Paves the Way for the Conservation of Rhododendron arboreum in Uttarakhand Himalayas</atitle><jtitle>Journal of the Indian Society of Remote Sensing</jtitle><stitle>J Indian Soc Remote Sens</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>48</volume><issue>3</issue><spage>411</spage><epage>422</epage><pages>411-422</pages><issn>0255-660X</issn><eissn>0974-3006</eissn><abstract>In the middle Himalayas, Rhododendron arboreum is shrinking due to low seed viability, poor regeneration, habitat degradation and fragmentation, habitat distortion, and species invasion. Further, developmental activities, the encroachment of forestland for agriculture, urbanization, and industrial expansion put additional burdens on its natural distribution. The present work focused on the prediction of R. arboreum distribution in Uttarakhand Himalayas using the Maxent model. In total, 1077 geospatial data were recorded, 300 well-distributed geo-coordinates were used to predict and estimate the distribution, while the rest were used to validate the model. The Maxent model generated AUC curve with an accurate and significant value of 0.886 ± 0.023. Bioclimatic variables such as temperature seasonality (Bio 4), annual temperature range (Bio 7), altitude (Alt), annual precipitation (Bio 12), and precipitation seasonality (Bio 15) contributed significantly to predict the distribution, as revealed by the Jackknife test. Within the total geographical area of 617.48 km 2 under R. arboreum distribution as shown over Landsat 8 generated map, 167.48 km 2 was found to be very dense, 320.75 km 2 was moderately dense, and 129.25 km 2 was open. The estimated distributed area was 2733.08 km 2 . The satellite-based mapping and model-based prediction of R. arboreum are of paramount importance to the foresters and researchers for species conservation, management, and utilization in a sustainable manner.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12524-019-01089-0</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7069-7048</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0255-660X
ispartof Journal of the Indian Society of Remote Sensing, 2020-03, Vol.48 (3), p.411-422
issn 0255-660X
0974-3006
language eng
recordid cdi_proquest_journals_2377703961
source SpringerLink Journals
subjects Agricultural management
Annual precipitation
Bioclimatology
Earth and Environmental Science
Earth Sciences
Encroachment
Environmental degradation
Invasive species
Landsat
Landsat satellites
Mapping
Regeneration
Remote sensing
Remote Sensing/Photogrammetry
Research Article
Seasonal variations
Spatial data
Urbanization
Viability
Wildlife conservation
title Prediction Mapping Through Maxent Modeling Paves the Way for the Conservation of Rhododendron arboreum in Uttarakhand Himalayas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A22%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20Mapping%20Through%20Maxent%20Modeling%20Paves%20the%20Way%20for%20the%20Conservation%20of%20Rhododendron%20arboreum%20in%20Uttarakhand%20Himalayas&rft.jtitle=Journal%20of%20the%20Indian%20Society%20of%20Remote%20Sensing&rft.au=Bhandari,%20Maneesh%20S.&rft.date=2020-03-01&rft.volume=48&rft.issue=3&rft.spage=411&rft.epage=422&rft.pages=411-422&rft.issn=0255-660X&rft.eissn=0974-3006&rft_id=info:doi/10.1007/s12524-019-01089-0&rft_dat=%3Cproquest_cross%3E2377703961%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377703961&rft_id=info:pmid/&rfr_iscdi=true