Microstructure evolution for oxide film of anodic aluminum foil used in high voltage electrolytic capacitor

The oxide film of anodic aluminum foil is the main working medium of aluminum electrolytic capacitor, and its quality directly affects the electrical performance of capacitor. The fabrication of anodic aluminum foil is conducted by a multiple-step anodizing process, including hydration, formation, h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2020-05, Vol.823, p.153795, Article 153795
Hauptverfasser: Pan, Sining, Liang, Libo, Lu, Baolin, Li, Huibin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 153795
container_title Journal of alloys and compounds
container_volume 823
creator Pan, Sining
Liang, Libo
Lu, Baolin
Li, Huibin
description The oxide film of anodic aluminum foil is the main working medium of aluminum electrolytic capacitor, and its quality directly affects the electrical performance of capacitor. The fabrication of anodic aluminum foil is conducted by a multiple-step anodizing process, including hydration, formation, heat treatment and phosphoric acid treatment. The microstructure evolution for oxide film of anodic aluminum foil during preparation process is studied quantitatively in this paper. The results show that, the pores area on the foil surface keeps decreasing after hydration and subsequent formation. However, after phosphoric acid treatment, the pores area stops decreasing and increases to a local maximum value. The length distribution of ‘corn-flake’ structures keeps increasing, from the range of 60–120 nm to 100–140 nm. After phosphoric acid treatment, the petal edges become serrated, and many small corrosion holes with the length of 20–30 nm are left inside. The thickness of the outer amorphous layer in the anodized oxide film keeps decreasing from the initial 390 nm to the final 90 nm. In contrast, the thickness of the inner dense layer keeps increasing from the initial 130 nm to the final 550 nm. The decreasing trend of grain size continues until the end of preparation process, and reaches the final value of 10 nm. The analysis of microstructure of oxide film is helpful for obtaining optimal process parameters and improving performance of aluminum foil. [Display omitted] •The microstructure evolution of oxide film is studied quantitatively.•The pores area increases to a local maximum value after H3PO4 treatment.•The petals length increases from the range of 60–120 nm to 100–140 nm.•The final thickness of outer layer and inner layer is 90 nm and 550 nm, respectively.•The decreasing trend of grain size continues and reaches the final value of 10 nm.
doi_str_mv 10.1016/j.jallcom.2020.153795
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2377703533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838820301584</els_id><sourcerecordid>2377703533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-699eb80e12d2b142bbf6a29ef624a6af086c6bd6cd82a00d25159d1f373586303</originalsourceid><addsrcrecordid>eNqFkEtLAzEYRYMoWKs_QQi4nppHJzOzEim-oOJG1yGTR5sxM6lJpth_b8p07yrwce4N9wBwi9ECI8zuu0UnnJO-XxBE8q2kVVOegRmuK1osGWvOwQw1pCxqWteX4CrGDiGEG4pn4PvdyuBjCqNMY9BQ770bk_UDND5A_2uVhsa6HnoDxeCVlVC4sbfD2GfCOjhGraAd4NZutjCHk9jkFqdlCt4dUual2Alpkw_X4MIIF_XN6Z2Dr-enz9Vrsf54eVs9rgtJaZUK1jS6rZHGRJEWL0nbGiZIow0jS8GEQTWTrFVMqpoIhBQpcdkobGhFy5pRROfgburdBf8z6ph458cw5C85oVVVIVpSmqlyoo77Y9CG74LtRThwjPjRK-_4ySs_euWT15x7mHI6T9hbHXiUVg9SKxvyaq68_afhD4IJhWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377703533</pqid></control><display><type>article</type><title>Microstructure evolution for oxide film of anodic aluminum foil used in high voltage electrolytic capacitor</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Pan, Sining ; Liang, Libo ; Lu, Baolin ; Li, Huibin</creator><creatorcontrib>Pan, Sining ; Liang, Libo ; Lu, Baolin ; Li, Huibin</creatorcontrib><description>The oxide film of anodic aluminum foil is the main working medium of aluminum electrolytic capacitor, and its quality directly affects the electrical performance of capacitor. The fabrication of anodic aluminum foil is conducted by a multiple-step anodizing process, including hydration, formation, heat treatment and phosphoric acid treatment. The microstructure evolution for oxide film of anodic aluminum foil during preparation process is studied quantitatively in this paper. The results show that, the pores area on the foil surface keeps decreasing after hydration and subsequent formation. However, after phosphoric acid treatment, the pores area stops decreasing and increases to a local maximum value. The length distribution of ‘corn-flake’ structures keeps increasing, from the range of 60–120 nm to 100–140 nm. After phosphoric acid treatment, the petal edges become serrated, and many small corrosion holes with the length of 20–30 nm are left inside. The thickness of the outer amorphous layer in the anodized oxide film keeps decreasing from the initial 390 nm to the final 90 nm. In contrast, the thickness of the inner dense layer keeps increasing from the initial 130 nm to the final 550 nm. The decreasing trend of grain size continues until the end of preparation process, and reaches the final value of 10 nm. The analysis of microstructure of oxide film is helpful for obtaining optimal process parameters and improving performance of aluminum foil. [Display omitted] •The microstructure evolution of oxide film is studied quantitatively.•The pores area increases to a local maximum value after H3PO4 treatment.•The petals length increases from the range of 60–120 nm to 100–140 nm.•The final thickness of outer layer and inner layer is 90 nm and 550 nm, respectively.•The decreasing trend of grain size continues and reaches the final value of 10 nm.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2020.153795</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Aluminum ; Aluminum electrolytic capacitor ; Anodic foil ; Capacitors ; Evolution ; Grain size ; Heat treatment ; Hydration ; Metal foils ; Microstructure ; Oxide coatings ; Oxide film ; Phosphoric acid ; Process parameters ; Thickness</subject><ispartof>Journal of alloys and compounds, 2020-05, Vol.823, p.153795, Article 153795</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-699eb80e12d2b142bbf6a29ef624a6af086c6bd6cd82a00d25159d1f373586303</citedby><cites>FETCH-LOGICAL-c337t-699eb80e12d2b142bbf6a29ef624a6af086c6bd6cd82a00d25159d1f373586303</cites><orcidid>0000-0003-3819-1909</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2020.153795$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Pan, Sining</creatorcontrib><creatorcontrib>Liang, Libo</creatorcontrib><creatorcontrib>Lu, Baolin</creatorcontrib><creatorcontrib>Li, Huibin</creatorcontrib><title>Microstructure evolution for oxide film of anodic aluminum foil used in high voltage electrolytic capacitor</title><title>Journal of alloys and compounds</title><description>The oxide film of anodic aluminum foil is the main working medium of aluminum electrolytic capacitor, and its quality directly affects the electrical performance of capacitor. The fabrication of anodic aluminum foil is conducted by a multiple-step anodizing process, including hydration, formation, heat treatment and phosphoric acid treatment. The microstructure evolution for oxide film of anodic aluminum foil during preparation process is studied quantitatively in this paper. The results show that, the pores area on the foil surface keeps decreasing after hydration and subsequent formation. However, after phosphoric acid treatment, the pores area stops decreasing and increases to a local maximum value. The length distribution of ‘corn-flake’ structures keeps increasing, from the range of 60–120 nm to 100–140 nm. After phosphoric acid treatment, the petal edges become serrated, and many small corrosion holes with the length of 20–30 nm are left inside. The thickness of the outer amorphous layer in the anodized oxide film keeps decreasing from the initial 390 nm to the final 90 nm. In contrast, the thickness of the inner dense layer keeps increasing from the initial 130 nm to the final 550 nm. The decreasing trend of grain size continues until the end of preparation process, and reaches the final value of 10 nm. The analysis of microstructure of oxide film is helpful for obtaining optimal process parameters and improving performance of aluminum foil. [Display omitted] •The microstructure evolution of oxide film is studied quantitatively.•The pores area increases to a local maximum value after H3PO4 treatment.•The petals length increases from the range of 60–120 nm to 100–140 nm.•The final thickness of outer layer and inner layer is 90 nm and 550 nm, respectively.•The decreasing trend of grain size continues and reaches the final value of 10 nm.</description><subject>Aluminum</subject><subject>Aluminum electrolytic capacitor</subject><subject>Anodic foil</subject><subject>Capacitors</subject><subject>Evolution</subject><subject>Grain size</subject><subject>Heat treatment</subject><subject>Hydration</subject><subject>Metal foils</subject><subject>Microstructure</subject><subject>Oxide coatings</subject><subject>Oxide film</subject><subject>Phosphoric acid</subject><subject>Process parameters</subject><subject>Thickness</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEYRYMoWKs_QQi4nppHJzOzEim-oOJG1yGTR5sxM6lJpth_b8p07yrwce4N9wBwi9ECI8zuu0UnnJO-XxBE8q2kVVOegRmuK1osGWvOwQw1pCxqWteX4CrGDiGEG4pn4PvdyuBjCqNMY9BQ770bk_UDND5A_2uVhsa6HnoDxeCVlVC4sbfD2GfCOjhGraAd4NZutjCHk9jkFqdlCt4dUual2Alpkw_X4MIIF_XN6Z2Dr-enz9Vrsf54eVs9rgtJaZUK1jS6rZHGRJEWL0nbGiZIow0jS8GEQTWTrFVMqpoIhBQpcdkobGhFy5pRROfgburdBf8z6ph458cw5C85oVVVIVpSmqlyoo77Y9CG74LtRThwjPjRK-_4ySs_euWT15x7mHI6T9hbHXiUVg9SKxvyaq68_afhD4IJhWg</recordid><startdate>20200515</startdate><enddate>20200515</enddate><creator>Pan, Sining</creator><creator>Liang, Libo</creator><creator>Lu, Baolin</creator><creator>Li, Huibin</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-3819-1909</orcidid></search><sort><creationdate>20200515</creationdate><title>Microstructure evolution for oxide film of anodic aluminum foil used in high voltage electrolytic capacitor</title><author>Pan, Sining ; Liang, Libo ; Lu, Baolin ; Li, Huibin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-699eb80e12d2b142bbf6a29ef624a6af086c6bd6cd82a00d25159d1f373586303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum</topic><topic>Aluminum electrolytic capacitor</topic><topic>Anodic foil</topic><topic>Capacitors</topic><topic>Evolution</topic><topic>Grain size</topic><topic>Heat treatment</topic><topic>Hydration</topic><topic>Metal foils</topic><topic>Microstructure</topic><topic>Oxide coatings</topic><topic>Oxide film</topic><topic>Phosphoric acid</topic><topic>Process parameters</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Sining</creatorcontrib><creatorcontrib>Liang, Libo</creatorcontrib><creatorcontrib>Lu, Baolin</creatorcontrib><creatorcontrib>Li, Huibin</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Sining</au><au>Liang, Libo</au><au>Lu, Baolin</au><au>Li, Huibin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure evolution for oxide film of anodic aluminum foil used in high voltage electrolytic capacitor</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2020-05-15</date><risdate>2020</risdate><volume>823</volume><spage>153795</spage><pages>153795-</pages><artnum>153795</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>The oxide film of anodic aluminum foil is the main working medium of aluminum electrolytic capacitor, and its quality directly affects the electrical performance of capacitor. The fabrication of anodic aluminum foil is conducted by a multiple-step anodizing process, including hydration, formation, heat treatment and phosphoric acid treatment. The microstructure evolution for oxide film of anodic aluminum foil during preparation process is studied quantitatively in this paper. The results show that, the pores area on the foil surface keeps decreasing after hydration and subsequent formation. However, after phosphoric acid treatment, the pores area stops decreasing and increases to a local maximum value. The length distribution of ‘corn-flake’ structures keeps increasing, from the range of 60–120 nm to 100–140 nm. After phosphoric acid treatment, the petal edges become serrated, and many small corrosion holes with the length of 20–30 nm are left inside. The thickness of the outer amorphous layer in the anodized oxide film keeps decreasing from the initial 390 nm to the final 90 nm. In contrast, the thickness of the inner dense layer keeps increasing from the initial 130 nm to the final 550 nm. The decreasing trend of grain size continues until the end of preparation process, and reaches the final value of 10 nm. The analysis of microstructure of oxide film is helpful for obtaining optimal process parameters and improving performance of aluminum foil. [Display omitted] •The microstructure evolution of oxide film is studied quantitatively.•The pores area increases to a local maximum value after H3PO4 treatment.•The petals length increases from the range of 60–120 nm to 100–140 nm.•The final thickness of outer layer and inner layer is 90 nm and 550 nm, respectively.•The decreasing trend of grain size continues and reaches the final value of 10 nm.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2020.153795</doi><orcidid>https://orcid.org/0000-0003-3819-1909</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2020-05, Vol.823, p.153795, Article 153795
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2377703533
source Elsevier ScienceDirect Journals Complete
subjects Aluminum
Aluminum electrolytic capacitor
Anodic foil
Capacitors
Evolution
Grain size
Heat treatment
Hydration
Metal foils
Microstructure
Oxide coatings
Oxide film
Phosphoric acid
Process parameters
Thickness
title Microstructure evolution for oxide film of anodic aluminum foil used in high voltage electrolytic capacitor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A46%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20evolution%20for%20oxide%20film%20of%20anodic%20aluminum%20foil%20used%20in%20high%20voltage%20electrolytic%20capacitor&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Pan,%20Sining&rft.date=2020-05-15&rft.volume=823&rft.spage=153795&rft.pages=153795-&rft.artnum=153795&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2020.153795&rft_dat=%3Cproquest_cross%3E2377703533%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377703533&rft_id=info:pmid/&rft_els_id=S0925838820301584&rfr_iscdi=true