Anionic nanoparticles enable the oral delivery of proteins by enhancing intestinal permeability

The oral delivery of bioactive peptides and proteins is prevented by the intestinal epithelial barrier, in which intercellular tight junction complexes block the uptake of macromolecules. Here we show that anionic nanoparticles induce tight junction relaxation, increasing intestinal permeability and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biomedical engineering 2020-01, Vol.4 (1), p.84-96
Hauptverfasser: Lamson, Nicholas G., Berger, Adrian, Fein, Katherine C., Whitehead, Kathryn A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 96
container_issue 1
container_start_page 84
container_title Nature biomedical engineering
container_volume 4
creator Lamson, Nicholas G.
Berger, Adrian
Fein, Katherine C.
Whitehead, Kathryn A.
description The oral delivery of bioactive peptides and proteins is prevented by the intestinal epithelial barrier, in which intercellular tight junction complexes block the uptake of macromolecules. Here we show that anionic nanoparticles induce tight junction relaxation, increasing intestinal permeability and enabling the oral delivery of proteins. This permeation-enhancing effect is a function of nanoparticle size and charge, with smaller (≤ 200 nm) and more negative particles (such as silica) conferring enhanced permeability. In healthy mice, silica nanoparticles enabled the oral delivery of insulin and exenatide, with 10 U kg −1 orally delivered insulin sustaining hypoglycaemia for a few hours longer than a 1 U kg −1 dose of subcutaneously injected insulin. In healthy, hyperglycaemic and diabetic mice, the oral delivery of 10 U kg −1 insulin led to a dose-adjusted bioactivity of, respectively, 35%, 29% and 23% that of the subcutaneous injection of 1 U kg −1 insulin. The permeation-enhancing effect of the nanoparticles was reversible, non-toxic, and attributable to the binding to integrins on the surface of epithelial cells. Anionic nanoparticles increase intestinal permeability and enable the oral delivery of proteins, as shown with the delivery of insulin in healthy, hyperglycaemic, and diabetic mice.
doi_str_mv 10.1038/s41551-019-0465-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2377660954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377660954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-9fd9729fe50407c517e914521dfc93c302d8f05aaed45bef0b67ba16bb35707d3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMottQ-gBsJuB5NJreZZSneQHCj4C4kM2falGmmJlNh3t6UqZeNqxzId_7z8yF0SckNJay4jZwKQTNCy4xwKTJxgqY5FSoruHw__TNP0DzGDSGJZLxU4hxNGJWFJCSfIr3wrvOuwt74bmdC76oWIgZvbAu4XwPugmlxDa37hDDgrsG70PXgfMR2SNza-Mr5FXa-h9g7n-AdhC0Y61rXDxforDFthPnxnaG3-7vX5WP2_PLwtFw8ZxUvaJ-VTV2qvGxAEE5UJaiCknKR07qpSlYxktdFQ4QxUHNhoSFWKmuotJYJRVTNZuh6zE3tPvapid50-5DaRJ0zpaQkpeCJoiNVhS7GAI3eBbc1YdCU6INVPVrVyZU-WNUi7Vwdk_d2C_XPxrfDBOQjENOXX0H4Pf1_6heg3YN9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377660954</pqid></control><display><type>article</type><title>Anionic nanoparticles enable the oral delivery of proteins by enhancing intestinal permeability</title><source>MEDLINE</source><source>SpringerNature Complete Journals</source><creator>Lamson, Nicholas G. ; Berger, Adrian ; Fein, Katherine C. ; Whitehead, Kathryn A.</creator><creatorcontrib>Lamson, Nicholas G. ; Berger, Adrian ; Fein, Katherine C. ; Whitehead, Kathryn A.</creatorcontrib><description>The oral delivery of bioactive peptides and proteins is prevented by the intestinal epithelial barrier, in which intercellular tight junction complexes block the uptake of macromolecules. Here we show that anionic nanoparticles induce tight junction relaxation, increasing intestinal permeability and enabling the oral delivery of proteins. This permeation-enhancing effect is a function of nanoparticle size and charge, with smaller (≤ 200 nm) and more negative particles (such as silica) conferring enhanced permeability. In healthy mice, silica nanoparticles enabled the oral delivery of insulin and exenatide, with 10 U kg −1 orally delivered insulin sustaining hypoglycaemia for a few hours longer than a 1 U kg −1 dose of subcutaneously injected insulin. In healthy, hyperglycaemic and diabetic mice, the oral delivery of 10 U kg −1 insulin led to a dose-adjusted bioactivity of, respectively, 35%, 29% and 23% that of the subcutaneous injection of 1 U kg −1 insulin. The permeation-enhancing effect of the nanoparticles was reversible, non-toxic, and attributable to the binding to integrins on the surface of epithelial cells. Anionic nanoparticles increase intestinal permeability and enable the oral delivery of proteins, as shown with the delivery of insulin in healthy, hyperglycaemic, and diabetic mice.</description><identifier>ISSN: 2157-846X</identifier><identifier>EISSN: 2157-846X</identifier><identifier>DOI: 10.1038/s41551-019-0465-5</identifier><identifier>PMID: 31686002</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 14/19 ; 631/61/2297 ; 639/166/985 ; 639/925/350 ; 64 ; 64/60 ; 82 ; 82/80 ; Administration, Oral ; Animals ; Biocompatibility ; Biological activity ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Cell Line ; Cell Membrane Permeability - drug effects ; Diabetes ; Diabetes mellitus ; Diabetes Mellitus, Type 1 - drug therapy ; Drug Delivery Systems ; Epithelial cells ; Exenatide - administration &amp; dosage ; Hypoglycemia ; Insulin ; Insulin - administration &amp; dosage ; Integrins ; Intestinal Mucosa - drug effects ; Intestinal Mucosa - metabolism ; Intestine ; Macromolecules ; Mice, Inbred C57BL ; Nanoparticles ; Nanoparticles - administration &amp; dosage ; Nanoparticles - chemistry ; Particle Size ; Penetration ; Peptides ; Permeability ; Proteins ; Silica ; Silicon dioxide ; Silicon Dioxide - administration &amp; dosage ; Tight Junctions - drug effects ; Tight Junctions - metabolism</subject><ispartof>Nature biomedical engineering, 2020-01, Vol.4 (1), p.84-96</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-9fd9729fe50407c517e914521dfc93c302d8f05aaed45bef0b67ba16bb35707d3</citedby><cites>FETCH-LOGICAL-c481t-9fd9729fe50407c517e914521dfc93c302d8f05aaed45bef0b67ba16bb35707d3</cites><orcidid>0000-0002-0100-7824</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41551-019-0465-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41551-019-0465-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31686002$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lamson, Nicholas G.</creatorcontrib><creatorcontrib>Berger, Adrian</creatorcontrib><creatorcontrib>Fein, Katherine C.</creatorcontrib><creatorcontrib>Whitehead, Kathryn A.</creatorcontrib><title>Anionic nanoparticles enable the oral delivery of proteins by enhancing intestinal permeability</title><title>Nature biomedical engineering</title><addtitle>Nat Biomed Eng</addtitle><addtitle>Nat Biomed Eng</addtitle><description>The oral delivery of bioactive peptides and proteins is prevented by the intestinal epithelial barrier, in which intercellular tight junction complexes block the uptake of macromolecules. Here we show that anionic nanoparticles induce tight junction relaxation, increasing intestinal permeability and enabling the oral delivery of proteins. This permeation-enhancing effect is a function of nanoparticle size and charge, with smaller (≤ 200 nm) and more negative particles (such as silica) conferring enhanced permeability. In healthy mice, silica nanoparticles enabled the oral delivery of insulin and exenatide, with 10 U kg −1 orally delivered insulin sustaining hypoglycaemia for a few hours longer than a 1 U kg −1 dose of subcutaneously injected insulin. In healthy, hyperglycaemic and diabetic mice, the oral delivery of 10 U kg −1 insulin led to a dose-adjusted bioactivity of, respectively, 35%, 29% and 23% that of the subcutaneous injection of 1 U kg −1 insulin. The permeation-enhancing effect of the nanoparticles was reversible, non-toxic, and attributable to the binding to integrins on the surface of epithelial cells. Anionic nanoparticles increase intestinal permeability and enable the oral delivery of proteins, as shown with the delivery of insulin in healthy, hyperglycaemic, and diabetic mice.</description><subject>13/1</subject><subject>14/19</subject><subject>631/61/2297</subject><subject>639/166/985</subject><subject>639/925/350</subject><subject>64</subject><subject>64/60</subject><subject>82</subject><subject>82/80</subject><subject>Administration, Oral</subject><subject>Animals</subject><subject>Biocompatibility</subject><subject>Biological activity</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Cell Line</subject><subject>Cell Membrane Permeability - drug effects</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes Mellitus, Type 1 - drug therapy</subject><subject>Drug Delivery Systems</subject><subject>Epithelial cells</subject><subject>Exenatide - administration &amp; dosage</subject><subject>Hypoglycemia</subject><subject>Insulin</subject><subject>Insulin - administration &amp; dosage</subject><subject>Integrins</subject><subject>Intestinal Mucosa - drug effects</subject><subject>Intestinal Mucosa - metabolism</subject><subject>Intestine</subject><subject>Macromolecules</subject><subject>Mice, Inbred C57BL</subject><subject>Nanoparticles</subject><subject>Nanoparticles - administration &amp; dosage</subject><subject>Nanoparticles - chemistry</subject><subject>Particle Size</subject><subject>Penetration</subject><subject>Peptides</subject><subject>Permeability</subject><subject>Proteins</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Silicon Dioxide - administration &amp; dosage</subject><subject>Tight Junctions - drug effects</subject><subject>Tight Junctions - metabolism</subject><issn>2157-846X</issn><issn>2157-846X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kMtKAzEUhoMottQ-gBsJuB5NJreZZSneQHCj4C4kM2falGmmJlNh3t6UqZeNqxzId_7z8yF0SckNJay4jZwKQTNCy4xwKTJxgqY5FSoruHw__TNP0DzGDSGJZLxU4hxNGJWFJCSfIr3wrvOuwt74bmdC76oWIgZvbAu4XwPugmlxDa37hDDgrsG70PXgfMR2SNza-Mr5FXa-h9g7n-AdhC0Y61rXDxforDFthPnxnaG3-7vX5WP2_PLwtFw8ZxUvaJ-VTV2qvGxAEE5UJaiCknKR07qpSlYxktdFQ4QxUHNhoSFWKmuotJYJRVTNZuh6zE3tPvapid50-5DaRJ0zpaQkpeCJoiNVhS7GAI3eBbc1YdCU6INVPVrVyZU-WNUi7Vwdk_d2C_XPxrfDBOQjENOXX0H4Pf1_6heg3YN9</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Lamson, Nicholas G.</creator><creator>Berger, Adrian</creator><creator>Fein, Katherine C.</creator><creator>Whitehead, Kathryn A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-0100-7824</orcidid></search><sort><creationdate>20200101</creationdate><title>Anionic nanoparticles enable the oral delivery of proteins by enhancing intestinal permeability</title><author>Lamson, Nicholas G. ; Berger, Adrian ; Fein, Katherine C. ; Whitehead, Kathryn A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-9fd9729fe50407c517e914521dfc93c302d8f05aaed45bef0b67ba16bb35707d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/1</topic><topic>14/19</topic><topic>631/61/2297</topic><topic>639/166/985</topic><topic>639/925/350</topic><topic>64</topic><topic>64/60</topic><topic>82</topic><topic>82/80</topic><topic>Administration, Oral</topic><topic>Animals</topic><topic>Biocompatibility</topic><topic>Biological activity</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Cell Line</topic><topic>Cell Membrane Permeability - drug effects</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes Mellitus, Type 1 - drug therapy</topic><topic>Drug Delivery Systems</topic><topic>Epithelial cells</topic><topic>Exenatide - administration &amp; dosage</topic><topic>Hypoglycemia</topic><topic>Insulin</topic><topic>Insulin - administration &amp; dosage</topic><topic>Integrins</topic><topic>Intestinal Mucosa - drug effects</topic><topic>Intestinal Mucosa - metabolism</topic><topic>Intestine</topic><topic>Macromolecules</topic><topic>Mice, Inbred C57BL</topic><topic>Nanoparticles</topic><topic>Nanoparticles - administration &amp; dosage</topic><topic>Nanoparticles - chemistry</topic><topic>Particle Size</topic><topic>Penetration</topic><topic>Peptides</topic><topic>Permeability</topic><topic>Proteins</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Silicon Dioxide - administration &amp; dosage</topic><topic>Tight Junctions - drug effects</topic><topic>Tight Junctions - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lamson, Nicholas G.</creatorcontrib><creatorcontrib>Berger, Adrian</creatorcontrib><creatorcontrib>Fein, Katherine C.</creatorcontrib><creatorcontrib>Whitehead, Kathryn A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nature biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lamson, Nicholas G.</au><au>Berger, Adrian</au><au>Fein, Katherine C.</au><au>Whitehead, Kathryn A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anionic nanoparticles enable the oral delivery of proteins by enhancing intestinal permeability</atitle><jtitle>Nature biomedical engineering</jtitle><stitle>Nat Biomed Eng</stitle><addtitle>Nat Biomed Eng</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>4</volume><issue>1</issue><spage>84</spage><epage>96</epage><pages>84-96</pages><issn>2157-846X</issn><eissn>2157-846X</eissn><abstract>The oral delivery of bioactive peptides and proteins is prevented by the intestinal epithelial barrier, in which intercellular tight junction complexes block the uptake of macromolecules. Here we show that anionic nanoparticles induce tight junction relaxation, increasing intestinal permeability and enabling the oral delivery of proteins. This permeation-enhancing effect is a function of nanoparticle size and charge, with smaller (≤ 200 nm) and more negative particles (such as silica) conferring enhanced permeability. In healthy mice, silica nanoparticles enabled the oral delivery of insulin and exenatide, with 10 U kg −1 orally delivered insulin sustaining hypoglycaemia for a few hours longer than a 1 U kg −1 dose of subcutaneously injected insulin. In healthy, hyperglycaemic and diabetic mice, the oral delivery of 10 U kg −1 insulin led to a dose-adjusted bioactivity of, respectively, 35%, 29% and 23% that of the subcutaneous injection of 1 U kg −1 insulin. The permeation-enhancing effect of the nanoparticles was reversible, non-toxic, and attributable to the binding to integrins on the surface of epithelial cells. Anionic nanoparticles increase intestinal permeability and enable the oral delivery of proteins, as shown with the delivery of insulin in healthy, hyperglycaemic, and diabetic mice.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31686002</pmid><doi>10.1038/s41551-019-0465-5</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0100-7824</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2157-846X
ispartof Nature biomedical engineering, 2020-01, Vol.4 (1), p.84-96
issn 2157-846X
2157-846X
language eng
recordid cdi_proquest_journals_2377660954
source MEDLINE; SpringerNature Complete Journals
subjects 13/1
14/19
631/61/2297
639/166/985
639/925/350
64
64/60
82
82/80
Administration, Oral
Animals
Biocompatibility
Biological activity
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Cell Line
Cell Membrane Permeability - drug effects
Diabetes
Diabetes mellitus
Diabetes Mellitus, Type 1 - drug therapy
Drug Delivery Systems
Epithelial cells
Exenatide - administration & dosage
Hypoglycemia
Insulin
Insulin - administration & dosage
Integrins
Intestinal Mucosa - drug effects
Intestinal Mucosa - metabolism
Intestine
Macromolecules
Mice, Inbred C57BL
Nanoparticles
Nanoparticles - administration & dosage
Nanoparticles - chemistry
Particle Size
Penetration
Peptides
Permeability
Proteins
Silica
Silicon dioxide
Silicon Dioxide - administration & dosage
Tight Junctions - drug effects
Tight Junctions - metabolism
title Anionic nanoparticles enable the oral delivery of proteins by enhancing intestinal permeability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A15%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anionic%20nanoparticles%20enable%20the%20oral%20delivery%20of%20proteins%20by%20enhancing%20intestinal%20permeability&rft.jtitle=Nature%20biomedical%20engineering&rft.au=Lamson,%20Nicholas%20G.&rft.date=2020-01-01&rft.volume=4&rft.issue=1&rft.spage=84&rft.epage=96&rft.pages=84-96&rft.issn=2157-846X&rft.eissn=2157-846X&rft_id=info:doi/10.1038/s41551-019-0465-5&rft_dat=%3Cproquest_cross%3E2377660954%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377660954&rft_id=info:pmid/31686002&rfr_iscdi=true