Graphene/Strontium Titanate: Approaching Single Crystal–Like Charge Transport in Polycrystalline Oxide Perovskite Nanocomposites through Grain Boundary Engineering

Grain boundaries critically limit the electronic performance of oxide perovskites. These interfaces lower the carrier mobilities of polycrystalline materials by several orders of magnitude compared to single crystals. Despite extensive effort, improving the mobility of polycrystalline materials (to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-03, Vol.30 (12), p.n/a
Hauptverfasser: Lin, Yue, Dylla, Maxwell Thomas, Kuo, Jimmy Jiahong, Male, James Patrick, Kinloch, Ian Anthony, Freer, Robert, Snyder, Gerald Jeffery
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page
container_title Advanced functional materials
container_volume 30
creator Lin, Yue
Dylla, Maxwell Thomas
Kuo, Jimmy Jiahong
Male, James Patrick
Kinloch, Ian Anthony
Freer, Robert
Snyder, Gerald Jeffery
description Grain boundaries critically limit the electronic performance of oxide perovskites. These interfaces lower the carrier mobilities of polycrystalline materials by several orders of magnitude compared to single crystals. Despite extensive effort, improving the mobility of polycrystalline materials (to meet the performance of single crystals) is still a severe challenge. In this work, the grain boundary effect is eliminated in perovskite strontium titanate (STO) by incorporating graphene into the polycrystalline microstructure. An effective mass model provides strong evidence that polycrystalline graphene/strontium titanate (G/STO) nanocomposites approach single crystal‐like charge transport. This phenomenological model reduces the complexity of analyzing charge transport properties so that a quantitative comparison can be made between the nanocomposites and STO single crystals. In other related works, graphene composites also optimize the thermal transport properties of thermoelectric materials. Therefore, decorating grain boundaries with graphene appears to be a robust strategy to achieve “phonon glass–electron crystal” behavior in oxide perovskites. In oxide perovskites, a major factor limiting electronic performance is the existence of grain boundaries. Carrier mobilities in polycrystalline oxide perovskites are orders of magnitude less than the carrier mobilities in single‐crystals with grain boundaries. By the incorporation of graphene into perovskite strontium titanate, the grain boundary effect is eliminated. Structurally polycrystalline graphene/strontium titanate nanocomposites approach single‐crystal charge transport behavior.
doi_str_mv 10.1002/adfm.201910079
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2377625060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377625060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3579-586bfe15dfbb06e1e9ddd05c134e540f1e0fd1b43549cae98184369787cb2bca3</originalsourceid><addsrcrecordid>eNqFkc1OAjEUhSdGExHdum7iGmjnf9whApqgkICJu0mnc4cpDO3YdlR2voPP4Iv5JJZgcOmmtyc53_3JcZxLgrsEY7dH82LTdTFJrIqSI6dFQhJ2POzGx4c_eT51zrReYUyiyPNbztdY0boEAb25UVIY3mzQghsqqIFr1K9rJSkruViiuX0qQAO11YZW3x-fE762sqRqCWihqNC1VAZxgWay2rK9reIC0PSd54BmoOSrXnMD6JEKyeSmltoqjUypZLMskV3F0jeyETlVWzQUS0uDsnPPnZOCVhoufmvbeRoNF4O7zmQ6vh_0Jx3mBVHSCeIwK4AEeZFlOAQCSZ7nOGDE8yHwcUEAFznJfC_wE0YhiUnse2ESxRHL3IxRr-1c7fvas18a0CZdyUYJOzJ1vSgK3QCH2Lq6exdTUmsFRVorvrErpwSnuyjSXRTpIQoLJHvgjVew_ced9m9HD3_sD0Yrk1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377625060</pqid></control><display><type>article</type><title>Graphene/Strontium Titanate: Approaching Single Crystal–Like Charge Transport in Polycrystalline Oxide Perovskite Nanocomposites through Grain Boundary Engineering</title><source>Access via Wiley Online Library</source><creator>Lin, Yue ; Dylla, Maxwell Thomas ; Kuo, Jimmy Jiahong ; Male, James Patrick ; Kinloch, Ian Anthony ; Freer, Robert ; Snyder, Gerald Jeffery</creator><creatorcontrib>Lin, Yue ; Dylla, Maxwell Thomas ; Kuo, Jimmy Jiahong ; Male, James Patrick ; Kinloch, Ian Anthony ; Freer, Robert ; Snyder, Gerald Jeffery</creatorcontrib><description>Grain boundaries critically limit the electronic performance of oxide perovskites. These interfaces lower the carrier mobilities of polycrystalline materials by several orders of magnitude compared to single crystals. Despite extensive effort, improving the mobility of polycrystalline materials (to meet the performance of single crystals) is still a severe challenge. In this work, the grain boundary effect is eliminated in perovskite strontium titanate (STO) by incorporating graphene into the polycrystalline microstructure. An effective mass model provides strong evidence that polycrystalline graphene/strontium titanate (G/STO) nanocomposites approach single crystal‐like charge transport. This phenomenological model reduces the complexity of analyzing charge transport properties so that a quantitative comparison can be made between the nanocomposites and STO single crystals. In other related works, graphene composites also optimize the thermal transport properties of thermoelectric materials. Therefore, decorating grain boundaries with graphene appears to be a robust strategy to achieve “phonon glass–electron crystal” behavior in oxide perovskites. In oxide perovskites, a major factor limiting electronic performance is the existence of grain boundaries. Carrier mobilities in polycrystalline oxide perovskites are orders of magnitude less than the carrier mobilities in single‐crystals with grain boundaries. By the incorporation of graphene into perovskite strontium titanate, the grain boundary effect is eliminated. Structurally polycrystalline graphene/strontium titanate nanocomposites approach single‐crystal charge transport behavior.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201910079</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Charge transport ; Grain boundaries ; grain boundary engineering ; Graphene ; Materials science ; Nanocomposites ; oxide perovskites ; Perovskites ; Polycrystals ; Single crystals ; Strontium ; Strontium titanates ; Thermoelectric materials ; Transport properties</subject><ispartof>Advanced functional materials, 2020-03, Vol.30 (12), p.n/a</ispartof><rights>2020 The Authors. Published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3579-586bfe15dfbb06e1e9ddd05c134e540f1e0fd1b43549cae98184369787cb2bca3</citedby><cites>FETCH-LOGICAL-c3579-586bfe15dfbb06e1e9ddd05c134e540f1e0fd1b43549cae98184369787cb2bca3</cites><orcidid>0000-0001-9196-9180</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201910079$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201910079$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Lin, Yue</creatorcontrib><creatorcontrib>Dylla, Maxwell Thomas</creatorcontrib><creatorcontrib>Kuo, Jimmy Jiahong</creatorcontrib><creatorcontrib>Male, James Patrick</creatorcontrib><creatorcontrib>Kinloch, Ian Anthony</creatorcontrib><creatorcontrib>Freer, Robert</creatorcontrib><creatorcontrib>Snyder, Gerald Jeffery</creatorcontrib><title>Graphene/Strontium Titanate: Approaching Single Crystal–Like Charge Transport in Polycrystalline Oxide Perovskite Nanocomposites through Grain Boundary Engineering</title><title>Advanced functional materials</title><description>Grain boundaries critically limit the electronic performance of oxide perovskites. These interfaces lower the carrier mobilities of polycrystalline materials by several orders of magnitude compared to single crystals. Despite extensive effort, improving the mobility of polycrystalline materials (to meet the performance of single crystals) is still a severe challenge. In this work, the grain boundary effect is eliminated in perovskite strontium titanate (STO) by incorporating graphene into the polycrystalline microstructure. An effective mass model provides strong evidence that polycrystalline graphene/strontium titanate (G/STO) nanocomposites approach single crystal‐like charge transport. This phenomenological model reduces the complexity of analyzing charge transport properties so that a quantitative comparison can be made between the nanocomposites and STO single crystals. In other related works, graphene composites also optimize the thermal transport properties of thermoelectric materials. Therefore, decorating grain boundaries with graphene appears to be a robust strategy to achieve “phonon glass–electron crystal” behavior in oxide perovskites. In oxide perovskites, a major factor limiting electronic performance is the existence of grain boundaries. Carrier mobilities in polycrystalline oxide perovskites are orders of magnitude less than the carrier mobilities in single‐crystals with grain boundaries. By the incorporation of graphene into perovskite strontium titanate, the grain boundary effect is eliminated. Structurally polycrystalline graphene/strontium titanate nanocomposites approach single‐crystal charge transport behavior.</description><subject>Charge transport</subject><subject>Grain boundaries</subject><subject>grain boundary engineering</subject><subject>Graphene</subject><subject>Materials science</subject><subject>Nanocomposites</subject><subject>oxide perovskites</subject><subject>Perovskites</subject><subject>Polycrystals</subject><subject>Single crystals</subject><subject>Strontium</subject><subject>Strontium titanates</subject><subject>Thermoelectric materials</subject><subject>Transport properties</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkc1OAjEUhSdGExHdum7iGmjnf9whApqgkICJu0mnc4cpDO3YdlR2voPP4Iv5JJZgcOmmtyc53_3JcZxLgrsEY7dH82LTdTFJrIqSI6dFQhJ2POzGx4c_eT51zrReYUyiyPNbztdY0boEAb25UVIY3mzQghsqqIFr1K9rJSkruViiuX0qQAO11YZW3x-fE762sqRqCWihqNC1VAZxgWay2rK9reIC0PSd54BmoOSrXnMD6JEKyeSmltoqjUypZLMskV3F0jeyETlVWzQUS0uDsnPPnZOCVhoufmvbeRoNF4O7zmQ6vh_0Jx3mBVHSCeIwK4AEeZFlOAQCSZ7nOGDE8yHwcUEAFznJfC_wE0YhiUnse2ESxRHL3IxRr-1c7fvas18a0CZdyUYJOzJ1vSgK3QCH2Lq6exdTUmsFRVorvrErpwSnuyjSXRTpIQoLJHvgjVew_ced9m9HD3_sD0Yrk1Q</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Lin, Yue</creator><creator>Dylla, Maxwell Thomas</creator><creator>Kuo, Jimmy Jiahong</creator><creator>Male, James Patrick</creator><creator>Kinloch, Ian Anthony</creator><creator>Freer, Robert</creator><creator>Snyder, Gerald Jeffery</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9196-9180</orcidid></search><sort><creationdate>20200301</creationdate><title>Graphene/Strontium Titanate: Approaching Single Crystal–Like Charge Transport in Polycrystalline Oxide Perovskite Nanocomposites through Grain Boundary Engineering</title><author>Lin, Yue ; Dylla, Maxwell Thomas ; Kuo, Jimmy Jiahong ; Male, James Patrick ; Kinloch, Ian Anthony ; Freer, Robert ; Snyder, Gerald Jeffery</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3579-586bfe15dfbb06e1e9ddd05c134e540f1e0fd1b43549cae98184369787cb2bca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Charge transport</topic><topic>Grain boundaries</topic><topic>grain boundary engineering</topic><topic>Graphene</topic><topic>Materials science</topic><topic>Nanocomposites</topic><topic>oxide perovskites</topic><topic>Perovskites</topic><topic>Polycrystals</topic><topic>Single crystals</topic><topic>Strontium</topic><topic>Strontium titanates</topic><topic>Thermoelectric materials</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Yue</creatorcontrib><creatorcontrib>Dylla, Maxwell Thomas</creatorcontrib><creatorcontrib>Kuo, Jimmy Jiahong</creatorcontrib><creatorcontrib>Male, James Patrick</creatorcontrib><creatorcontrib>Kinloch, Ian Anthony</creatorcontrib><creatorcontrib>Freer, Robert</creatorcontrib><creatorcontrib>Snyder, Gerald Jeffery</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Yue</au><au>Dylla, Maxwell Thomas</au><au>Kuo, Jimmy Jiahong</au><au>Male, James Patrick</au><au>Kinloch, Ian Anthony</au><au>Freer, Robert</au><au>Snyder, Gerald Jeffery</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene/Strontium Titanate: Approaching Single Crystal–Like Charge Transport in Polycrystalline Oxide Perovskite Nanocomposites through Grain Boundary Engineering</atitle><jtitle>Advanced functional materials</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>30</volume><issue>12</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Grain boundaries critically limit the electronic performance of oxide perovskites. These interfaces lower the carrier mobilities of polycrystalline materials by several orders of magnitude compared to single crystals. Despite extensive effort, improving the mobility of polycrystalline materials (to meet the performance of single crystals) is still a severe challenge. In this work, the grain boundary effect is eliminated in perovskite strontium titanate (STO) by incorporating graphene into the polycrystalline microstructure. An effective mass model provides strong evidence that polycrystalline graphene/strontium titanate (G/STO) nanocomposites approach single crystal‐like charge transport. This phenomenological model reduces the complexity of analyzing charge transport properties so that a quantitative comparison can be made between the nanocomposites and STO single crystals. In other related works, graphene composites also optimize the thermal transport properties of thermoelectric materials. Therefore, decorating grain boundaries with graphene appears to be a robust strategy to achieve “phonon glass–electron crystal” behavior in oxide perovskites. In oxide perovskites, a major factor limiting electronic performance is the existence of grain boundaries. Carrier mobilities in polycrystalline oxide perovskites are orders of magnitude less than the carrier mobilities in single‐crystals with grain boundaries. By the incorporation of graphene into perovskite strontium titanate, the grain boundary effect is eliminated. Structurally polycrystalline graphene/strontium titanate nanocomposites approach single‐crystal charge transport behavior.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201910079</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9196-9180</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-03, Vol.30 (12), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2377625060
source Access via Wiley Online Library
subjects Charge transport
Grain boundaries
grain boundary engineering
Graphene
Materials science
Nanocomposites
oxide perovskites
Perovskites
Polycrystals
Single crystals
Strontium
Strontium titanates
Thermoelectric materials
Transport properties
title Graphene/Strontium Titanate: Approaching Single Crystal–Like Charge Transport in Polycrystalline Oxide Perovskite Nanocomposites through Grain Boundary Engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T04%3A18%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene/Strontium%20Titanate:%20Approaching%20Single%20Crystal%E2%80%93Like%20Charge%20Transport%20in%20Polycrystalline%20Oxide%20Perovskite%20Nanocomposites%20through%20Grain%20Boundary%20Engineering&rft.jtitle=Advanced%20functional%20materials&rft.au=Lin,%20Yue&rft.date=2020-03-01&rft.volume=30&rft.issue=12&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201910079&rft_dat=%3Cproquest_cross%3E2377625060%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377625060&rft_id=info:pmid/&rfr_iscdi=true