MXene Composite and Coaxial Fibers with High Stretchability and Conductivity for Wearable Strain Sensing Textiles

The integration of nanomaterials with high conductivity into stretchable polymer fibers can achieve novel functionalities such as sensing physical deformations. With a metallic conductivity that exceeds other solution‐processed nanomaterials, 2D titanium carbide MXene is an attractive material to pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-03, Vol.30 (12), p.n/a
Hauptverfasser: Seyedin, Shayan, Uzun, Simge, Levitt, Ariana, Anasori, Babak, Dion, Genevieve, Gogotsi, Yury, Razal, Joselito M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page
container_title Advanced functional materials
container_volume 30
creator Seyedin, Shayan
Uzun, Simge
Levitt, Ariana
Anasori, Babak
Dion, Genevieve
Gogotsi, Yury
Razal, Joselito M.
description The integration of nanomaterials with high conductivity into stretchable polymer fibers can achieve novel functionalities such as sensing physical deformations. With a metallic conductivity that exceeds other solution‐processed nanomaterials, 2D titanium carbide MXene is an attractive material to produce conducting and stretchable fibers. Here, a scalable wet‐spinning technique is used to produce Ti3C2Tx MXene/polyurethane (PU) composite fibers that show both conductivity and high stretchability. The conductivity at a very low percolation threshold of ≈1 wt% is demonstrated, which is lower than the previously reported values for MXene‐based polymer composites. When used as a strain sensor, the MXene/PU composite fibers show a high gauge factor of ≈12900 (≈238 at 50% strain) and a large sensing strain of ≈152%. The cyclic strain sensing performance is further improved by producing fibers with MXene/PU sheath and pure PU core using a coaxial wet‐spinning process. Using a commercial‐scale knitting machine, MXene/PU fibers are knitted into a one‐piece elbow sleeve, which can track various movements of the wearer's elbow. This study establishes fundamental insights into the behavior of MXene in elastomeric composites and presents strategies to achieve MXene‐based fibers and textiles with strain sensing properties suitable for applications in health, sports, and entertainment. Conductive elastomeric composite and coaxial fibers are fabricated using Ti3C2Tx MXene, which show strain sensing properties by changing electrical resistance when stretched. The composite fibers are knitted into strain sensing textiles that can be worn directly and monitor the user's diverse body movements. MXene‐based fibers and textiles could cater to wearable applications such as off‐site health monitoring of patients.
doi_str_mv 10.1002/adfm.201910504
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2377624819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377624819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3964-a5f22899b42cfd2d9ffb7476e3be9f7d6b654be1958ce3d35ec2d690082f7b6a3</originalsourceid><addsrcrecordid>eNqFkM9PwjAUxxujiYhePTfxDLbd1q5HgiImEA9g5La06yuUjA3aIfDfuwWiR0_vRz7f9837IvRISZ8Swp6VsZs-I1RSkpD4CnUop7wXEZZe__Z0cYvuQlgTQoWI4g7aTRdQAh5Wm20VXA1YlaaZ1NGpAo-cBh_wwdUrPHbLFZ7VHup8pbQrXH26sKXZ57X7bhe28vgLlFe6gBZWrsQzKIMrl3gOx9oVEO7RjVVFgIdL7aLP0et8OO5NPt7eh4NJL48kj3sqsYylUuqY5dYwI63VIhYcIg3SCsM1T2INVCZpDpGJEsiZ4ZKQlFmhuYq66Ol8d-ur3R5Cna2rvS8by4xFQnAWp1Q2VP9M5b4KwYPNtt5tlD9llGRtrFkba_YbayOQZ8Gheeb0D50NXkbTP-0P7bB9jw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377624819</pqid></control><display><type>article</type><title>MXene Composite and Coaxial Fibers with High Stretchability and Conductivity for Wearable Strain Sensing Textiles</title><source>Wiley Journals</source><creator>Seyedin, Shayan ; Uzun, Simge ; Levitt, Ariana ; Anasori, Babak ; Dion, Genevieve ; Gogotsi, Yury ; Razal, Joselito M.</creator><creatorcontrib>Seyedin, Shayan ; Uzun, Simge ; Levitt, Ariana ; Anasori, Babak ; Dion, Genevieve ; Gogotsi, Yury ; Razal, Joselito M.</creatorcontrib><description>The integration of nanomaterials with high conductivity into stretchable polymer fibers can achieve novel functionalities such as sensing physical deformations. With a metallic conductivity that exceeds other solution‐processed nanomaterials, 2D titanium carbide MXene is an attractive material to produce conducting and stretchable fibers. Here, a scalable wet‐spinning technique is used to produce Ti3C2Tx MXene/polyurethane (PU) composite fibers that show both conductivity and high stretchability. The conductivity at a very low percolation threshold of ≈1 wt% is demonstrated, which is lower than the previously reported values for MXene‐based polymer composites. When used as a strain sensor, the MXene/PU composite fibers show a high gauge factor of ≈12900 (≈238 at 50% strain) and a large sensing strain of ≈152%. The cyclic strain sensing performance is further improved by producing fibers with MXene/PU sheath and pure PU core using a coaxial wet‐spinning process. Using a commercial‐scale knitting machine, MXene/PU fibers are knitted into a one‐piece elbow sleeve, which can track various movements of the wearer's elbow. This study establishes fundamental insights into the behavior of MXene in elastomeric composites and presents strategies to achieve MXene‐based fibers and textiles with strain sensing properties suitable for applications in health, sports, and entertainment. Conductive elastomeric composite and coaxial fibers are fabricated using Ti3C2Tx MXene, which show strain sensing properties by changing electrical resistance when stretched. The composite fibers are knitted into strain sensing textiles that can be worn directly and monitor the user's diverse body movements. MXene‐based fibers and textiles could cater to wearable applications such as off‐site health monitoring of patients.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201910504</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>coaxial fibers ; composite fibers ; Conductivity ; Detection ; Elastomers ; Fibers ; Knitting ; Materials science ; MXene ; MXenes ; Nanomaterials ; Percolation ; Polymer matrix composites ; Polyurethane resins ; Sheaths ; strain sensors ; Stretchability ; Textiles ; Titanium carbide ; wearable body movement monitoring</subject><ispartof>Advanced functional materials, 2020-03, Vol.30 (12), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3964-a5f22899b42cfd2d9ffb7476e3be9f7d6b654be1958ce3d35ec2d690082f7b6a3</citedby><cites>FETCH-LOGICAL-c3964-a5f22899b42cfd2d9ffb7476e3be9f7d6b654be1958ce3d35ec2d690082f7b6a3</cites><orcidid>0000-0001-9423-4032 ; 0000-0002-0469-1772 ; 0000-0001-7322-0387</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201910504$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201910504$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Seyedin, Shayan</creatorcontrib><creatorcontrib>Uzun, Simge</creatorcontrib><creatorcontrib>Levitt, Ariana</creatorcontrib><creatorcontrib>Anasori, Babak</creatorcontrib><creatorcontrib>Dion, Genevieve</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><creatorcontrib>Razal, Joselito M.</creatorcontrib><title>MXene Composite and Coaxial Fibers with High Stretchability and Conductivity for Wearable Strain Sensing Textiles</title><title>Advanced functional materials</title><description>The integration of nanomaterials with high conductivity into stretchable polymer fibers can achieve novel functionalities such as sensing physical deformations. With a metallic conductivity that exceeds other solution‐processed nanomaterials, 2D titanium carbide MXene is an attractive material to produce conducting and stretchable fibers. Here, a scalable wet‐spinning technique is used to produce Ti3C2Tx MXene/polyurethane (PU) composite fibers that show both conductivity and high stretchability. The conductivity at a very low percolation threshold of ≈1 wt% is demonstrated, which is lower than the previously reported values for MXene‐based polymer composites. When used as a strain sensor, the MXene/PU composite fibers show a high gauge factor of ≈12900 (≈238 at 50% strain) and a large sensing strain of ≈152%. The cyclic strain sensing performance is further improved by producing fibers with MXene/PU sheath and pure PU core using a coaxial wet‐spinning process. Using a commercial‐scale knitting machine, MXene/PU fibers are knitted into a one‐piece elbow sleeve, which can track various movements of the wearer's elbow. This study establishes fundamental insights into the behavior of MXene in elastomeric composites and presents strategies to achieve MXene‐based fibers and textiles with strain sensing properties suitable for applications in health, sports, and entertainment. Conductive elastomeric composite and coaxial fibers are fabricated using Ti3C2Tx MXene, which show strain sensing properties by changing electrical resistance when stretched. The composite fibers are knitted into strain sensing textiles that can be worn directly and monitor the user's diverse body movements. MXene‐based fibers and textiles could cater to wearable applications such as off‐site health monitoring of patients.</description><subject>coaxial fibers</subject><subject>composite fibers</subject><subject>Conductivity</subject><subject>Detection</subject><subject>Elastomers</subject><subject>Fibers</subject><subject>Knitting</subject><subject>Materials science</subject><subject>MXene</subject><subject>MXenes</subject><subject>Nanomaterials</subject><subject>Percolation</subject><subject>Polymer matrix composites</subject><subject>Polyurethane resins</subject><subject>Sheaths</subject><subject>strain sensors</subject><subject>Stretchability</subject><subject>Textiles</subject><subject>Titanium carbide</subject><subject>wearable body movement monitoring</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM9PwjAUxxujiYhePTfxDLbd1q5HgiImEA9g5La06yuUjA3aIfDfuwWiR0_vRz7f9837IvRISZ8Swp6VsZs-I1RSkpD4CnUop7wXEZZe__Z0cYvuQlgTQoWI4g7aTRdQAh5Wm20VXA1YlaaZ1NGpAo-cBh_wwdUrPHbLFZ7VHup8pbQrXH26sKXZ57X7bhe28vgLlFe6gBZWrsQzKIMrl3gOx9oVEO7RjVVFgIdL7aLP0et8OO5NPt7eh4NJL48kj3sqsYylUuqY5dYwI63VIhYcIg3SCsM1T2INVCZpDpGJEsiZ4ZKQlFmhuYq66Ol8d-ur3R5Cna2rvS8by4xFQnAWp1Q2VP9M5b4KwYPNtt5tlD9llGRtrFkba_YbayOQZ8Gheeb0D50NXkbTP-0P7bB9jw</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Seyedin, Shayan</creator><creator>Uzun, Simge</creator><creator>Levitt, Ariana</creator><creator>Anasori, Babak</creator><creator>Dion, Genevieve</creator><creator>Gogotsi, Yury</creator><creator>Razal, Joselito M.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9423-4032</orcidid><orcidid>https://orcid.org/0000-0002-0469-1772</orcidid><orcidid>https://orcid.org/0000-0001-7322-0387</orcidid></search><sort><creationdate>20200301</creationdate><title>MXene Composite and Coaxial Fibers with High Stretchability and Conductivity for Wearable Strain Sensing Textiles</title><author>Seyedin, Shayan ; Uzun, Simge ; Levitt, Ariana ; Anasori, Babak ; Dion, Genevieve ; Gogotsi, Yury ; Razal, Joselito M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3964-a5f22899b42cfd2d9ffb7476e3be9f7d6b654be1958ce3d35ec2d690082f7b6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>coaxial fibers</topic><topic>composite fibers</topic><topic>Conductivity</topic><topic>Detection</topic><topic>Elastomers</topic><topic>Fibers</topic><topic>Knitting</topic><topic>Materials science</topic><topic>MXene</topic><topic>MXenes</topic><topic>Nanomaterials</topic><topic>Percolation</topic><topic>Polymer matrix composites</topic><topic>Polyurethane resins</topic><topic>Sheaths</topic><topic>strain sensors</topic><topic>Stretchability</topic><topic>Textiles</topic><topic>Titanium carbide</topic><topic>wearable body movement monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seyedin, Shayan</creatorcontrib><creatorcontrib>Uzun, Simge</creatorcontrib><creatorcontrib>Levitt, Ariana</creatorcontrib><creatorcontrib>Anasori, Babak</creatorcontrib><creatorcontrib>Dion, Genevieve</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><creatorcontrib>Razal, Joselito M.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seyedin, Shayan</au><au>Uzun, Simge</au><au>Levitt, Ariana</au><au>Anasori, Babak</au><au>Dion, Genevieve</au><au>Gogotsi, Yury</au><au>Razal, Joselito M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MXene Composite and Coaxial Fibers with High Stretchability and Conductivity for Wearable Strain Sensing Textiles</atitle><jtitle>Advanced functional materials</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>30</volume><issue>12</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The integration of nanomaterials with high conductivity into stretchable polymer fibers can achieve novel functionalities such as sensing physical deformations. With a metallic conductivity that exceeds other solution‐processed nanomaterials, 2D titanium carbide MXene is an attractive material to produce conducting and stretchable fibers. Here, a scalable wet‐spinning technique is used to produce Ti3C2Tx MXene/polyurethane (PU) composite fibers that show both conductivity and high stretchability. The conductivity at a very low percolation threshold of ≈1 wt% is demonstrated, which is lower than the previously reported values for MXene‐based polymer composites. When used as a strain sensor, the MXene/PU composite fibers show a high gauge factor of ≈12900 (≈238 at 50% strain) and a large sensing strain of ≈152%. The cyclic strain sensing performance is further improved by producing fibers with MXene/PU sheath and pure PU core using a coaxial wet‐spinning process. Using a commercial‐scale knitting machine, MXene/PU fibers are knitted into a one‐piece elbow sleeve, which can track various movements of the wearer's elbow. This study establishes fundamental insights into the behavior of MXene in elastomeric composites and presents strategies to achieve MXene‐based fibers and textiles with strain sensing properties suitable for applications in health, sports, and entertainment. Conductive elastomeric composite and coaxial fibers are fabricated using Ti3C2Tx MXene, which show strain sensing properties by changing electrical resistance when stretched. The composite fibers are knitted into strain sensing textiles that can be worn directly and monitor the user's diverse body movements. MXene‐based fibers and textiles could cater to wearable applications such as off‐site health monitoring of patients.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201910504</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9423-4032</orcidid><orcidid>https://orcid.org/0000-0002-0469-1772</orcidid><orcidid>https://orcid.org/0000-0001-7322-0387</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-03, Vol.30 (12), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2377624819
source Wiley Journals
subjects coaxial fibers
composite fibers
Conductivity
Detection
Elastomers
Fibers
Knitting
Materials science
MXene
MXenes
Nanomaterials
Percolation
Polymer matrix composites
Polyurethane resins
Sheaths
strain sensors
Stretchability
Textiles
Titanium carbide
wearable body movement monitoring
title MXene Composite and Coaxial Fibers with High Stretchability and Conductivity for Wearable Strain Sensing Textiles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A39%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MXene%20Composite%20and%20Coaxial%20Fibers%20with%20High%20Stretchability%20and%20Conductivity%20for%20Wearable%20Strain%20Sensing%20Textiles&rft.jtitle=Advanced%20functional%20materials&rft.au=Seyedin,%20Shayan&rft.date=2020-03-01&rft.volume=30&rft.issue=12&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201910504&rft_dat=%3Cproquest_cross%3E2377624819%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377624819&rft_id=info:pmid/&rfr_iscdi=true