Dipolar and Kelvin-Stuart’s cat’s eyes vortices in magnetoplasmas with non-Maxwellian electron distribution

Linear and nonlinear propagation characteristics of drift ion acoustic waves are analyzed in an inhomogeneous plasma comprising of warm ions having shear flow parallel to the magnetic field and electrons that are followed by a distribution which is dictated by spectral indices, r and q in low and hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysics and space science 2020-03, Vol.365 (3), Article 52
Hauptverfasser: Naeem, Ismat, Masood, W., Mirza, Arshad M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Astrophysics and space science
container_volume 365
creator Naeem, Ismat
Masood, W.
Mirza, Arshad M.
description Linear and nonlinear propagation characteristics of drift ion acoustic waves are analyzed in an inhomogeneous plasma comprising of warm ions having shear flow parallel to the magnetic field and electrons that are followed by a distribution which is dictated by spectral indices, r and q in low and high phase density regions. In the linear regime, the dispersion relation of the drift-ion acoustic wave is derived and the condition for the onset of shear flow instability is presented. It is found that condition for the emergence of shear flow instability gets modified by generalized ( r , q ) distribution and ion to electron temperature ratio. In the nonlinear regime, vortex formation with non-Maxwellian electron distribution is investigated and the effects of low and high energy electrons in this context are explored in detail. Interestingly, it is found that unlike the dipolar vortices, the electrons in the high phase space density regions do not significantly affect the Kelvin-Stuart’s cat’s eyes structures, however, the converse is true for the electrons belonging to the regions of low phase space density. Estimates of the size of these vortex structures in space plasmas are also given where the distribution function presented here is frequently encountered.
doi_str_mv 10.1007/s10509-020-03759-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2377614558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377614558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e0f31fefa8a68f268338cc333abe43f071b398d1ee753ece85348dfd3be2063</originalsourceid><addsrcrecordid>eNp9kD1OAzEUhC0EEiFwASpL1AZ7vX8uUfgVQRShSGd5d5-Do40dbG9COq7B9TgJC4tERzXzpJl50ofQKaPnjNLiIjCaUUFoQgnlRSaI2EMjlhUJEWk-30cjSmlK8pTOD9FRCMv-FLkoRshdmbVrlcfKNvgB2o2xZBY75ePn-0fAtRoUdhDwxvlo6t4Yi1dqYSG6davCSgW8NfEFW2fJo3rbQtsaZTG0UEfvLG5MiN5UXTTOHqMDrdoAJ786RrOb6-fJHZk-3d5PLqek5kxEAlRzpkGrUuWlTvKS87KuOeeqgpRrWrCKi7JhAEXGoYYy42nZ6IZXkNCcj9HZsLr27rWDEOXSdd72D2XCiyJnaZaVfSoZUrV3IXjQcu3NSvmdZFR-Y5UDVtljlT9YpehLfCiFPmwX4P-m_2l9AVPgf5M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377614558</pqid></control><display><type>article</type><title>Dipolar and Kelvin-Stuart’s cat’s eyes vortices in magnetoplasmas with non-Maxwellian electron distribution</title><source>Springer Nature - Complete Springer Journals</source><creator>Naeem, Ismat ; Masood, W. ; Mirza, Arshad M.</creator><creatorcontrib>Naeem, Ismat ; Masood, W. ; Mirza, Arshad M.</creatorcontrib><description>Linear and nonlinear propagation characteristics of drift ion acoustic waves are analyzed in an inhomogeneous plasma comprising of warm ions having shear flow parallel to the magnetic field and electrons that are followed by a distribution which is dictated by spectral indices, r and q in low and high phase density regions. In the linear regime, the dispersion relation of the drift-ion acoustic wave is derived and the condition for the onset of shear flow instability is presented. It is found that condition for the emergence of shear flow instability gets modified by generalized ( r , q ) distribution and ion to electron temperature ratio. In the nonlinear regime, vortex formation with non-Maxwellian electron distribution is investigated and the effects of low and high energy electrons in this context are explored in detail. Interestingly, it is found that unlike the dipolar vortices, the electrons in the high phase space density regions do not significantly affect the Kelvin-Stuart’s cat’s eyes structures, however, the converse is true for the electrons belonging to the regions of low phase space density. Estimates of the size of these vortex structures in space plasmas are also given where the distribution function presented here is frequently encountered.</description><identifier>ISSN: 0004-640X</identifier><identifier>EISSN: 1572-946X</identifier><identifier>DOI: 10.1007/s10509-020-03759-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Acoustic propagation ; Acoustic wave propagation ; Acoustic waves ; Astrobiology ; Astronomy ; Astrophysics ; Astrophysics and Astroparticles ; Cosmology ; Distribution functions ; Drift ; Electron distribution ; Electron energy ; Flow stability ; Fluid dynamics ; Fluid flow ; High energy electrons ; Ion acoustic waves ; Magnetic fields ; Observations and Techniques ; Original Article ; Physics ; Physics and Astronomy ; Shear flow ; Space density ; Space Exploration and Astronautics ; Space plasmas ; Space Sciences (including Extraterrestrial Physics ; Temperature ratio ; Vortices ; Wave propagation</subject><ispartof>Astrophysics and space science, 2020-03, Vol.365 (3), Article 52</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Astrophysics and Space Science is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e0f31fefa8a68f268338cc333abe43f071b398d1ee753ece85348dfd3be2063</citedby><cites>FETCH-LOGICAL-c319t-e0f31fefa8a68f268338cc333abe43f071b398d1ee753ece85348dfd3be2063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10509-020-03759-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10509-020-03759-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Naeem, Ismat</creatorcontrib><creatorcontrib>Masood, W.</creatorcontrib><creatorcontrib>Mirza, Arshad M.</creatorcontrib><title>Dipolar and Kelvin-Stuart’s cat’s eyes vortices in magnetoplasmas with non-Maxwellian electron distribution</title><title>Astrophysics and space science</title><addtitle>Astrophys Space Sci</addtitle><description>Linear and nonlinear propagation characteristics of drift ion acoustic waves are analyzed in an inhomogeneous plasma comprising of warm ions having shear flow parallel to the magnetic field and electrons that are followed by a distribution which is dictated by spectral indices, r and q in low and high phase density regions. In the linear regime, the dispersion relation of the drift-ion acoustic wave is derived and the condition for the onset of shear flow instability is presented. It is found that condition for the emergence of shear flow instability gets modified by generalized ( r , q ) distribution and ion to electron temperature ratio. In the nonlinear regime, vortex formation with non-Maxwellian electron distribution is investigated and the effects of low and high energy electrons in this context are explored in detail. Interestingly, it is found that unlike the dipolar vortices, the electrons in the high phase space density regions do not significantly affect the Kelvin-Stuart’s cat’s eyes structures, however, the converse is true for the electrons belonging to the regions of low phase space density. Estimates of the size of these vortex structures in space plasmas are also given where the distribution function presented here is frequently encountered.</description><subject>Acoustic propagation</subject><subject>Acoustic wave propagation</subject><subject>Acoustic waves</subject><subject>Astrobiology</subject><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Astrophysics and Astroparticles</subject><subject>Cosmology</subject><subject>Distribution functions</subject><subject>Drift</subject><subject>Electron distribution</subject><subject>Electron energy</subject><subject>Flow stability</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>High energy electrons</subject><subject>Ion acoustic waves</subject><subject>Magnetic fields</subject><subject>Observations and Techniques</subject><subject>Original Article</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Shear flow</subject><subject>Space density</subject><subject>Space Exploration and Astronautics</subject><subject>Space plasmas</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Temperature ratio</subject><subject>Vortices</subject><subject>Wave propagation</subject><issn>0004-640X</issn><issn>1572-946X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kD1OAzEUhC0EEiFwASpL1AZ7vX8uUfgVQRShSGd5d5-Do40dbG9COq7B9TgJC4tERzXzpJl50ofQKaPnjNLiIjCaUUFoQgnlRSaI2EMjlhUJEWk-30cjSmlK8pTOD9FRCMv-FLkoRshdmbVrlcfKNvgB2o2xZBY75ePn-0fAtRoUdhDwxvlo6t4Yi1dqYSG6davCSgW8NfEFW2fJo3rbQtsaZTG0UEfvLG5MiN5UXTTOHqMDrdoAJ786RrOb6-fJHZk-3d5PLqek5kxEAlRzpkGrUuWlTvKS87KuOeeqgpRrWrCKi7JhAEXGoYYy42nZ6IZXkNCcj9HZsLr27rWDEOXSdd72D2XCiyJnaZaVfSoZUrV3IXjQcu3NSvmdZFR-Y5UDVtljlT9YpehLfCiFPmwX4P-m_2l9AVPgf5M</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Naeem, Ismat</creator><creator>Masood, W.</creator><creator>Mirza, Arshad M.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20200301</creationdate><title>Dipolar and Kelvin-Stuart’s cat’s eyes vortices in magnetoplasmas with non-Maxwellian electron distribution</title><author>Naeem, Ismat ; Masood, W. ; Mirza, Arshad M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e0f31fefa8a68f268338cc333abe43f071b398d1ee753ece85348dfd3be2063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustic propagation</topic><topic>Acoustic wave propagation</topic><topic>Acoustic waves</topic><topic>Astrobiology</topic><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Astrophysics and Astroparticles</topic><topic>Cosmology</topic><topic>Distribution functions</topic><topic>Drift</topic><topic>Electron distribution</topic><topic>Electron energy</topic><topic>Flow stability</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>High energy electrons</topic><topic>Ion acoustic waves</topic><topic>Magnetic fields</topic><topic>Observations and Techniques</topic><topic>Original Article</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Shear flow</topic><topic>Space density</topic><topic>Space Exploration and Astronautics</topic><topic>Space plasmas</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Temperature ratio</topic><topic>Vortices</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naeem, Ismat</creatorcontrib><creatorcontrib>Masood, W.</creatorcontrib><creatorcontrib>Mirza, Arshad M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Astrophysics and space science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naeem, Ismat</au><au>Masood, W.</au><au>Mirza, Arshad M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dipolar and Kelvin-Stuart’s cat’s eyes vortices in magnetoplasmas with non-Maxwellian electron distribution</atitle><jtitle>Astrophysics and space science</jtitle><stitle>Astrophys Space Sci</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>365</volume><issue>3</issue><artnum>52</artnum><issn>0004-640X</issn><eissn>1572-946X</eissn><abstract>Linear and nonlinear propagation characteristics of drift ion acoustic waves are analyzed in an inhomogeneous plasma comprising of warm ions having shear flow parallel to the magnetic field and electrons that are followed by a distribution which is dictated by spectral indices, r and q in low and high phase density regions. In the linear regime, the dispersion relation of the drift-ion acoustic wave is derived and the condition for the onset of shear flow instability is presented. It is found that condition for the emergence of shear flow instability gets modified by generalized ( r , q ) distribution and ion to electron temperature ratio. In the nonlinear regime, vortex formation with non-Maxwellian electron distribution is investigated and the effects of low and high energy electrons in this context are explored in detail. Interestingly, it is found that unlike the dipolar vortices, the electrons in the high phase space density regions do not significantly affect the Kelvin-Stuart’s cat’s eyes structures, however, the converse is true for the electrons belonging to the regions of low phase space density. Estimates of the size of these vortex structures in space plasmas are also given where the distribution function presented here is frequently encountered.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10509-020-03759-9</doi></addata></record>
fulltext fulltext
identifier ISSN: 0004-640X
ispartof Astrophysics and space science, 2020-03, Vol.365 (3), Article 52
issn 0004-640X
1572-946X
language eng
recordid cdi_proquest_journals_2377614558
source Springer Nature - Complete Springer Journals
subjects Acoustic propagation
Acoustic wave propagation
Acoustic waves
Astrobiology
Astronomy
Astrophysics
Astrophysics and Astroparticles
Cosmology
Distribution functions
Drift
Electron distribution
Electron energy
Flow stability
Fluid dynamics
Fluid flow
High energy electrons
Ion acoustic waves
Magnetic fields
Observations and Techniques
Original Article
Physics
Physics and Astronomy
Shear flow
Space density
Space Exploration and Astronautics
Space plasmas
Space Sciences (including Extraterrestrial Physics
Temperature ratio
Vortices
Wave propagation
title Dipolar and Kelvin-Stuart’s cat’s eyes vortices in magnetoplasmas with non-Maxwellian electron distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A59%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dipolar%20and%20Kelvin-Stuart%E2%80%99s%20cat%E2%80%99s%20eyes%20vortices%20in%20magnetoplasmas%20with%20non-Maxwellian%20electron%20distribution&rft.jtitle=Astrophysics%20and%20space%20science&rft.au=Naeem,%20Ismat&rft.date=2020-03-01&rft.volume=365&rft.issue=3&rft.artnum=52&rft.issn=0004-640X&rft.eissn=1572-946X&rft_id=info:doi/10.1007/s10509-020-03759-9&rft_dat=%3Cproquest_cross%3E2377614558%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377614558&rft_id=info:pmid/&rfr_iscdi=true