Multi-User Offloading for Edge Computing Networks: A Dependency-Aware and Latency-Optimal Approach

Driven by the tremendous application demands, the Internet of Things (IoT) systems are expected to fulfill computation-intensive and latency-sensitive sensing and computational tasks, which pose a significant challenge for the IoT devices with limited computational ability and battery capacity. To a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2020-03, Vol.7 (3), p.1678-1689
Hauptverfasser: Shu, Chang, Zhao, Zhiwei, Han, Yunpeng, Min, Geyong, Duan, Hancong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1689
container_issue 3
container_start_page 1678
container_title IEEE internet of things journal
container_volume 7
creator Shu, Chang
Zhao, Zhiwei
Han, Yunpeng
Min, Geyong
Duan, Hancong
description Driven by the tremendous application demands, the Internet of Things (IoT) systems are expected to fulfill computation-intensive and latency-sensitive sensing and computational tasks, which pose a significant challenge for the IoT devices with limited computational ability and battery capacity. To address this problem, edge computing is a promising architecture where the IoT devices can offload their tasks to the edge servers. Current works on task offloading often overlook the unique task topologies and schedules from the IoT devices, leading to degraded performance and underutilization of the edge resources. In this article, we investigate the problem of fine-grained task offloading in edge computing for low-power IoT systems. By explicitly considering: 1) the topology/schedules of the IoT tasks; 2) the heterogeneous resources on edge servers; and 3) the wireless interference in the multiaccess edge networks, we propose a lightweight yet efficient offloading scheme for multiuser edge systems, which offloads the most appropriate IoT tasks/subtasks to edge servers such that the expected execution time is minimized. To support the multiuser offloading, we also propose a distributed consensus algorithm for low-power IoT devices. We conduct extensive simulation experiments and the results show that the proposed offloading algorithms can effectively reduce the end-to-end task execution time and improve the resource utilization of the edge servers.
doi_str_mv 10.1109/JIOT.2019.2943373
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2377362645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8847369</ieee_id><sourcerecordid>2377362645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-bf02ab61ca8531ce20ebddbef7eafeab9d7b3bb5937c6888601955f9edc5e92b3</originalsourceid><addsrcrecordid>eNpNUMtOwzAQtBBIVKUfgLhY4pziR-LE3KpSoKiQS3u27GRdUtIk2Imq_j0JrRCnXY3msTsI3VIypZTIh7dlup4yQuWUyZDzmF-gEeMsDkIh2OW__RpNvN8RQnpZRKUYIfPelW0RbDw4nFpb1jovqi22tcOLfAt4Xu-brh2gD2gPtfvyj3iGn6CBKocqOwazg3aAdZXjlW5_kbRpi70u8axpXK2zzxt0ZXXpYXKeY7R5Xqznr8EqfVnOZ6sgY5K3gbGEaSNoppOI0wwYAZPnBmwM2oI2Mo8NNyaSPM5EkiSi_zeKrIQ8i0Ayw8fo_uTbx3534Fu1qztX9ZGK8Tjmgokw6ln0xMpc7b0DqxrXn-uOihI1tKmGNtXQpjq32WvuTpoCAP74SRL2ppL_AEEGcY8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377362645</pqid></control><display><type>article</type><title>Multi-User Offloading for Edge Computing Networks: A Dependency-Aware and Latency-Optimal Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Shu, Chang ; Zhao, Zhiwei ; Han, Yunpeng ; Min, Geyong ; Duan, Hancong</creator><creatorcontrib>Shu, Chang ; Zhao, Zhiwei ; Han, Yunpeng ; Min, Geyong ; Duan, Hancong</creatorcontrib><description>Driven by the tremendous application demands, the Internet of Things (IoT) systems are expected to fulfill computation-intensive and latency-sensitive sensing and computational tasks, which pose a significant challenge for the IoT devices with limited computational ability and battery capacity. To address this problem, edge computing is a promising architecture where the IoT devices can offload their tasks to the edge servers. Current works on task offloading often overlook the unique task topologies and schedules from the IoT devices, leading to degraded performance and underutilization of the edge resources. In this article, we investigate the problem of fine-grained task offloading in edge computing for low-power IoT systems. By explicitly considering: 1) the topology/schedules of the IoT tasks; 2) the heterogeneous resources on edge servers; and 3) the wireless interference in the multiaccess edge networks, we propose a lightweight yet efficient offloading scheme for multiuser edge systems, which offloads the most appropriate IoT tasks/subtasks to edge servers such that the expected execution time is minimized. To support the multiuser offloading, we also propose a distributed consensus algorithm for low-power IoT devices. We conduct extensive simulation experiments and the results show that the proposed offloading algorithms can effectively reduce the end-to-end task execution time and improve the resource utilization of the edge servers.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2019.2943373</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Computation offloading ; Computer simulation ; Delays ; Devices ; Edge computing ; game theory ; Internet of Things ; Performance degradation ; Power management ; Resource management ; Resource utilization ; Schedules ; Servers ; Task analysis ; Task scheduling ; Topology ; Wireless communication</subject><ispartof>IEEE internet of things journal, 2020-03, Vol.7 (3), p.1678-1689</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-bf02ab61ca8531ce20ebddbef7eafeab9d7b3bb5937c6888601955f9edc5e92b3</citedby><cites>FETCH-LOGICAL-c293t-bf02ab61ca8531ce20ebddbef7eafeab9d7b3bb5937c6888601955f9edc5e92b3</cites><orcidid>0000-0002-3524-0384 ; 0000-0001-9103-8757 ; 0000-0001-5293-0558 ; 0000-0003-1395-7314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8847369$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27906,27907,54740</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8847369$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shu, Chang</creatorcontrib><creatorcontrib>Zhao, Zhiwei</creatorcontrib><creatorcontrib>Han, Yunpeng</creatorcontrib><creatorcontrib>Min, Geyong</creatorcontrib><creatorcontrib>Duan, Hancong</creatorcontrib><title>Multi-User Offloading for Edge Computing Networks: A Dependency-Aware and Latency-Optimal Approach</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Driven by the tremendous application demands, the Internet of Things (IoT) systems are expected to fulfill computation-intensive and latency-sensitive sensing and computational tasks, which pose a significant challenge for the IoT devices with limited computational ability and battery capacity. To address this problem, edge computing is a promising architecture where the IoT devices can offload their tasks to the edge servers. Current works on task offloading often overlook the unique task topologies and schedules from the IoT devices, leading to degraded performance and underutilization of the edge resources. In this article, we investigate the problem of fine-grained task offloading in edge computing for low-power IoT systems. By explicitly considering: 1) the topology/schedules of the IoT tasks; 2) the heterogeneous resources on edge servers; and 3) the wireless interference in the multiaccess edge networks, we propose a lightweight yet efficient offloading scheme for multiuser edge systems, which offloads the most appropriate IoT tasks/subtasks to edge servers such that the expected execution time is minimized. To support the multiuser offloading, we also propose a distributed consensus algorithm for low-power IoT devices. We conduct extensive simulation experiments and the results show that the proposed offloading algorithms can effectively reduce the end-to-end task execution time and improve the resource utilization of the edge servers.</description><subject>Algorithms</subject><subject>Computation offloading</subject><subject>Computer simulation</subject><subject>Delays</subject><subject>Devices</subject><subject>Edge computing</subject><subject>game theory</subject><subject>Internet of Things</subject><subject>Performance degradation</subject><subject>Power management</subject><subject>Resource management</subject><subject>Resource utilization</subject><subject>Schedules</subject><subject>Servers</subject><subject>Task analysis</subject><subject>Task scheduling</subject><subject>Topology</subject><subject>Wireless communication</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUMtOwzAQtBBIVKUfgLhY4pziR-LE3KpSoKiQS3u27GRdUtIk2Imq_j0JrRCnXY3msTsI3VIypZTIh7dlup4yQuWUyZDzmF-gEeMsDkIh2OW__RpNvN8RQnpZRKUYIfPelW0RbDw4nFpb1jovqi22tcOLfAt4Xu-brh2gD2gPtfvyj3iGn6CBKocqOwazg3aAdZXjlW5_kbRpi70u8axpXK2zzxt0ZXXpYXKeY7R5Xqznr8EqfVnOZ6sgY5K3gbGEaSNoppOI0wwYAZPnBmwM2oI2Mo8NNyaSPM5EkiSi_zeKrIQ8i0Ayw8fo_uTbx3534Fu1qztX9ZGK8Tjmgokw6ln0xMpc7b0DqxrXn-uOihI1tKmGNtXQpjq32WvuTpoCAP74SRL2ppL_AEEGcY8</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Shu, Chang</creator><creator>Zhao, Zhiwei</creator><creator>Han, Yunpeng</creator><creator>Min, Geyong</creator><creator>Duan, Hancong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3524-0384</orcidid><orcidid>https://orcid.org/0000-0001-9103-8757</orcidid><orcidid>https://orcid.org/0000-0001-5293-0558</orcidid><orcidid>https://orcid.org/0000-0003-1395-7314</orcidid></search><sort><creationdate>20200301</creationdate><title>Multi-User Offloading for Edge Computing Networks: A Dependency-Aware and Latency-Optimal Approach</title><author>Shu, Chang ; Zhao, Zhiwei ; Han, Yunpeng ; Min, Geyong ; Duan, Hancong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-bf02ab61ca8531ce20ebddbef7eafeab9d7b3bb5937c6888601955f9edc5e92b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computation offloading</topic><topic>Computer simulation</topic><topic>Delays</topic><topic>Devices</topic><topic>Edge computing</topic><topic>game theory</topic><topic>Internet of Things</topic><topic>Performance degradation</topic><topic>Power management</topic><topic>Resource management</topic><topic>Resource utilization</topic><topic>Schedules</topic><topic>Servers</topic><topic>Task analysis</topic><topic>Task scheduling</topic><topic>Topology</topic><topic>Wireless communication</topic><toplevel>online_resources</toplevel><creatorcontrib>Shu, Chang</creatorcontrib><creatorcontrib>Zhao, Zhiwei</creatorcontrib><creatorcontrib>Han, Yunpeng</creatorcontrib><creatorcontrib>Min, Geyong</creatorcontrib><creatorcontrib>Duan, Hancong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shu, Chang</au><au>Zhao, Zhiwei</au><au>Han, Yunpeng</au><au>Min, Geyong</au><au>Duan, Hancong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-User Offloading for Edge Computing Networks: A Dependency-Aware and Latency-Optimal Approach</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>7</volume><issue>3</issue><spage>1678</spage><epage>1689</epage><pages>1678-1689</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Driven by the tremendous application demands, the Internet of Things (IoT) systems are expected to fulfill computation-intensive and latency-sensitive sensing and computational tasks, which pose a significant challenge for the IoT devices with limited computational ability and battery capacity. To address this problem, edge computing is a promising architecture where the IoT devices can offload their tasks to the edge servers. Current works on task offloading often overlook the unique task topologies and schedules from the IoT devices, leading to degraded performance and underutilization of the edge resources. In this article, we investigate the problem of fine-grained task offloading in edge computing for low-power IoT systems. By explicitly considering: 1) the topology/schedules of the IoT tasks; 2) the heterogeneous resources on edge servers; and 3) the wireless interference in the multiaccess edge networks, we propose a lightweight yet efficient offloading scheme for multiuser edge systems, which offloads the most appropriate IoT tasks/subtasks to edge servers such that the expected execution time is minimized. To support the multiuser offloading, we also propose a distributed consensus algorithm for low-power IoT devices. We conduct extensive simulation experiments and the results show that the proposed offloading algorithms can effectively reduce the end-to-end task execution time and improve the resource utilization of the edge servers.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2019.2943373</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3524-0384</orcidid><orcidid>https://orcid.org/0000-0001-9103-8757</orcidid><orcidid>https://orcid.org/0000-0001-5293-0558</orcidid><orcidid>https://orcid.org/0000-0003-1395-7314</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2020-03, Vol.7 (3), p.1678-1689
issn 2327-4662
2327-4662
language eng
recordid cdi_proquest_journals_2377362645
source IEEE Electronic Library (IEL)
subjects Algorithms
Computation offloading
Computer simulation
Delays
Devices
Edge computing
game theory
Internet of Things
Performance degradation
Power management
Resource management
Resource utilization
Schedules
Servers
Task analysis
Task scheduling
Topology
Wireless communication
title Multi-User Offloading for Edge Computing Networks: A Dependency-Aware and Latency-Optimal Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A56%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-User%20Offloading%20for%20Edge%20Computing%20Networks:%20A%20Dependency-Aware%20and%20Latency-Optimal%20Approach&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Shu,%20Chang&rft.date=2020-03-01&rft.volume=7&rft.issue=3&rft.spage=1678&rft.epage=1689&rft.pages=1678-1689&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2019.2943373&rft_dat=%3Cproquest_RIE%3E2377362645%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377362645&rft_id=info:pmid/&rft_ieee_id=8847369&rfr_iscdi=true