Multi-User Offloading for Edge Computing Networks: A Dependency-Aware and Latency-Optimal Approach
Driven by the tremendous application demands, the Internet of Things (IoT) systems are expected to fulfill computation-intensive and latency-sensitive sensing and computational tasks, which pose a significant challenge for the IoT devices with limited computational ability and battery capacity. To a...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2020-03, Vol.7 (3), p.1678-1689 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1689 |
---|---|
container_issue | 3 |
container_start_page | 1678 |
container_title | IEEE internet of things journal |
container_volume | 7 |
creator | Shu, Chang Zhao, Zhiwei Han, Yunpeng Min, Geyong Duan, Hancong |
description | Driven by the tremendous application demands, the Internet of Things (IoT) systems are expected to fulfill computation-intensive and latency-sensitive sensing and computational tasks, which pose a significant challenge for the IoT devices with limited computational ability and battery capacity. To address this problem, edge computing is a promising architecture where the IoT devices can offload their tasks to the edge servers. Current works on task offloading often overlook the unique task topologies and schedules from the IoT devices, leading to degraded performance and underutilization of the edge resources. In this article, we investigate the problem of fine-grained task offloading in edge computing for low-power IoT systems. By explicitly considering: 1) the topology/schedules of the IoT tasks; 2) the heterogeneous resources on edge servers; and 3) the wireless interference in the multiaccess edge networks, we propose a lightweight yet efficient offloading scheme for multiuser edge systems, which offloads the most appropriate IoT tasks/subtasks to edge servers such that the expected execution time is minimized. To support the multiuser offloading, we also propose a distributed consensus algorithm for low-power IoT devices. We conduct extensive simulation experiments and the results show that the proposed offloading algorithms can effectively reduce the end-to-end task execution time and improve the resource utilization of the edge servers. |
doi_str_mv | 10.1109/JIOT.2019.2943373 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2377362645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8847369</ieee_id><sourcerecordid>2377362645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-bf02ab61ca8531ce20ebddbef7eafeab9d7b3bb5937c6888601955f9edc5e92b3</originalsourceid><addsrcrecordid>eNpNUMtOwzAQtBBIVKUfgLhY4pziR-LE3KpSoKiQS3u27GRdUtIk2Imq_j0JrRCnXY3msTsI3VIypZTIh7dlup4yQuWUyZDzmF-gEeMsDkIh2OW__RpNvN8RQnpZRKUYIfPelW0RbDw4nFpb1jovqi22tcOLfAt4Xu-brh2gD2gPtfvyj3iGn6CBKocqOwazg3aAdZXjlW5_kbRpi70u8axpXK2zzxt0ZXXpYXKeY7R5Xqznr8EqfVnOZ6sgY5K3gbGEaSNoppOI0wwYAZPnBmwM2oI2Mo8NNyaSPM5EkiSi_zeKrIQ8i0Ayw8fo_uTbx3534Fu1qztX9ZGK8Tjmgokw6ln0xMpc7b0DqxrXn-uOihI1tKmGNtXQpjq32WvuTpoCAP74SRL2ppL_AEEGcY8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377362645</pqid></control><display><type>article</type><title>Multi-User Offloading for Edge Computing Networks: A Dependency-Aware and Latency-Optimal Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Shu, Chang ; Zhao, Zhiwei ; Han, Yunpeng ; Min, Geyong ; Duan, Hancong</creator><creatorcontrib>Shu, Chang ; Zhao, Zhiwei ; Han, Yunpeng ; Min, Geyong ; Duan, Hancong</creatorcontrib><description>Driven by the tremendous application demands, the Internet of Things (IoT) systems are expected to fulfill computation-intensive and latency-sensitive sensing and computational tasks, which pose a significant challenge for the IoT devices with limited computational ability and battery capacity. To address this problem, edge computing is a promising architecture where the IoT devices can offload their tasks to the edge servers. Current works on task offloading often overlook the unique task topologies and schedules from the IoT devices, leading to degraded performance and underutilization of the edge resources. In this article, we investigate the problem of fine-grained task offloading in edge computing for low-power IoT systems. By explicitly considering: 1) the topology/schedules of the IoT tasks; 2) the heterogeneous resources on edge servers; and 3) the wireless interference in the multiaccess edge networks, we propose a lightweight yet efficient offloading scheme for multiuser edge systems, which offloads the most appropriate IoT tasks/subtasks to edge servers such that the expected execution time is minimized. To support the multiuser offloading, we also propose a distributed consensus algorithm for low-power IoT devices. We conduct extensive simulation experiments and the results show that the proposed offloading algorithms can effectively reduce the end-to-end task execution time and improve the resource utilization of the edge servers.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2019.2943373</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Computation offloading ; Computer simulation ; Delays ; Devices ; Edge computing ; game theory ; Internet of Things ; Performance degradation ; Power management ; Resource management ; Resource utilization ; Schedules ; Servers ; Task analysis ; Task scheduling ; Topology ; Wireless communication</subject><ispartof>IEEE internet of things journal, 2020-03, Vol.7 (3), p.1678-1689</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-bf02ab61ca8531ce20ebddbef7eafeab9d7b3bb5937c6888601955f9edc5e92b3</citedby><cites>FETCH-LOGICAL-c293t-bf02ab61ca8531ce20ebddbef7eafeab9d7b3bb5937c6888601955f9edc5e92b3</cites><orcidid>0000-0002-3524-0384 ; 0000-0001-9103-8757 ; 0000-0001-5293-0558 ; 0000-0003-1395-7314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8847369$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27906,27907,54740</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8847369$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shu, Chang</creatorcontrib><creatorcontrib>Zhao, Zhiwei</creatorcontrib><creatorcontrib>Han, Yunpeng</creatorcontrib><creatorcontrib>Min, Geyong</creatorcontrib><creatorcontrib>Duan, Hancong</creatorcontrib><title>Multi-User Offloading for Edge Computing Networks: A Dependency-Aware and Latency-Optimal Approach</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Driven by the tremendous application demands, the Internet of Things (IoT) systems are expected to fulfill computation-intensive and latency-sensitive sensing and computational tasks, which pose a significant challenge for the IoT devices with limited computational ability and battery capacity. To address this problem, edge computing is a promising architecture where the IoT devices can offload their tasks to the edge servers. Current works on task offloading often overlook the unique task topologies and schedules from the IoT devices, leading to degraded performance and underutilization of the edge resources. In this article, we investigate the problem of fine-grained task offloading in edge computing for low-power IoT systems. By explicitly considering: 1) the topology/schedules of the IoT tasks; 2) the heterogeneous resources on edge servers; and 3) the wireless interference in the multiaccess edge networks, we propose a lightweight yet efficient offloading scheme for multiuser edge systems, which offloads the most appropriate IoT tasks/subtasks to edge servers such that the expected execution time is minimized. To support the multiuser offloading, we also propose a distributed consensus algorithm for low-power IoT devices. We conduct extensive simulation experiments and the results show that the proposed offloading algorithms can effectively reduce the end-to-end task execution time and improve the resource utilization of the edge servers.</description><subject>Algorithms</subject><subject>Computation offloading</subject><subject>Computer simulation</subject><subject>Delays</subject><subject>Devices</subject><subject>Edge computing</subject><subject>game theory</subject><subject>Internet of Things</subject><subject>Performance degradation</subject><subject>Power management</subject><subject>Resource management</subject><subject>Resource utilization</subject><subject>Schedules</subject><subject>Servers</subject><subject>Task analysis</subject><subject>Task scheduling</subject><subject>Topology</subject><subject>Wireless communication</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUMtOwzAQtBBIVKUfgLhY4pziR-LE3KpSoKiQS3u27GRdUtIk2Imq_j0JrRCnXY3msTsI3VIypZTIh7dlup4yQuWUyZDzmF-gEeMsDkIh2OW__RpNvN8RQnpZRKUYIfPelW0RbDw4nFpb1jovqi22tcOLfAt4Xu-brh2gD2gPtfvyj3iGn6CBKocqOwazg3aAdZXjlW5_kbRpi70u8axpXK2zzxt0ZXXpYXKeY7R5Xqznr8EqfVnOZ6sgY5K3gbGEaSNoppOI0wwYAZPnBmwM2oI2Mo8NNyaSPM5EkiSi_zeKrIQ8i0Ayw8fo_uTbx3534Fu1qztX9ZGK8Tjmgokw6ln0xMpc7b0DqxrXn-uOihI1tKmGNtXQpjq32WvuTpoCAP74SRL2ppL_AEEGcY8</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Shu, Chang</creator><creator>Zhao, Zhiwei</creator><creator>Han, Yunpeng</creator><creator>Min, Geyong</creator><creator>Duan, Hancong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3524-0384</orcidid><orcidid>https://orcid.org/0000-0001-9103-8757</orcidid><orcidid>https://orcid.org/0000-0001-5293-0558</orcidid><orcidid>https://orcid.org/0000-0003-1395-7314</orcidid></search><sort><creationdate>20200301</creationdate><title>Multi-User Offloading for Edge Computing Networks: A Dependency-Aware and Latency-Optimal Approach</title><author>Shu, Chang ; Zhao, Zhiwei ; Han, Yunpeng ; Min, Geyong ; Duan, Hancong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-bf02ab61ca8531ce20ebddbef7eafeab9d7b3bb5937c6888601955f9edc5e92b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computation offloading</topic><topic>Computer simulation</topic><topic>Delays</topic><topic>Devices</topic><topic>Edge computing</topic><topic>game theory</topic><topic>Internet of Things</topic><topic>Performance degradation</topic><topic>Power management</topic><topic>Resource management</topic><topic>Resource utilization</topic><topic>Schedules</topic><topic>Servers</topic><topic>Task analysis</topic><topic>Task scheduling</topic><topic>Topology</topic><topic>Wireless communication</topic><toplevel>online_resources</toplevel><creatorcontrib>Shu, Chang</creatorcontrib><creatorcontrib>Zhao, Zhiwei</creatorcontrib><creatorcontrib>Han, Yunpeng</creatorcontrib><creatorcontrib>Min, Geyong</creatorcontrib><creatorcontrib>Duan, Hancong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shu, Chang</au><au>Zhao, Zhiwei</au><au>Han, Yunpeng</au><au>Min, Geyong</au><au>Duan, Hancong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-User Offloading for Edge Computing Networks: A Dependency-Aware and Latency-Optimal Approach</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>7</volume><issue>3</issue><spage>1678</spage><epage>1689</epage><pages>1678-1689</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Driven by the tremendous application demands, the Internet of Things (IoT) systems are expected to fulfill computation-intensive and latency-sensitive sensing and computational tasks, which pose a significant challenge for the IoT devices with limited computational ability and battery capacity. To address this problem, edge computing is a promising architecture where the IoT devices can offload their tasks to the edge servers. Current works on task offloading often overlook the unique task topologies and schedules from the IoT devices, leading to degraded performance and underutilization of the edge resources. In this article, we investigate the problem of fine-grained task offloading in edge computing for low-power IoT systems. By explicitly considering: 1) the topology/schedules of the IoT tasks; 2) the heterogeneous resources on edge servers; and 3) the wireless interference in the multiaccess edge networks, we propose a lightweight yet efficient offloading scheme for multiuser edge systems, which offloads the most appropriate IoT tasks/subtasks to edge servers such that the expected execution time is minimized. To support the multiuser offloading, we also propose a distributed consensus algorithm for low-power IoT devices. We conduct extensive simulation experiments and the results show that the proposed offloading algorithms can effectively reduce the end-to-end task execution time and improve the resource utilization of the edge servers.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2019.2943373</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3524-0384</orcidid><orcidid>https://orcid.org/0000-0001-9103-8757</orcidid><orcidid>https://orcid.org/0000-0001-5293-0558</orcidid><orcidid>https://orcid.org/0000-0003-1395-7314</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2020-03, Vol.7 (3), p.1678-1689 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_proquest_journals_2377362645 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Computation offloading Computer simulation Delays Devices Edge computing game theory Internet of Things Performance degradation Power management Resource management Resource utilization Schedules Servers Task analysis Task scheduling Topology Wireless communication |
title | Multi-User Offloading for Edge Computing Networks: A Dependency-Aware and Latency-Optimal Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A56%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-User%20Offloading%20for%20Edge%20Computing%20Networks:%20A%20Dependency-Aware%20and%20Latency-Optimal%20Approach&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Shu,%20Chang&rft.date=2020-03-01&rft.volume=7&rft.issue=3&rft.spage=1678&rft.epage=1689&rft.pages=1678-1689&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2019.2943373&rft_dat=%3Cproquest_RIE%3E2377362645%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377362645&rft_id=info:pmid/&rft_ieee_id=8847369&rfr_iscdi=true |