Spectrum-Based Optimal Filtering for Short-Term Phasor Data Prediction
This article describes a phasor data prediction and recovery algorithm that can be used to optimally extrapolate invalid or missing phasor data measurements. The basic output of the algorithm is the prediction of the phasor data when bad data quality is detected from a phasor measurement unit (PMU)...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industry applications 2020-03, Vol.56 (2), p.2069-2077 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2077 |
---|---|
container_issue | 2 |
container_start_page | 2069 |
container_title | IEEE transactions on industry applications |
container_volume | 56 |
creator | Konakalla, Sai Akhil Reddy de Callafon, Raymond A. |
description | This article describes a phasor data prediction and recovery algorithm that can be used to optimally extrapolate invalid or missing phasor data measurements. The basic output of the algorithm is the prediction of the phasor data when bad data quality is detected from a phasor measurement unit (PMU) at a given sampling rate. The approach is based on optimal one-sample prediction, where the sampling time between sample predictors is tuned based on the spectral content of phasor data. Optimality of prediction using such optimal filters is addressed in this article by iterative (recursive) search of the parameters of a nonlinear discrete-time integrated filter that minimizes the norm of the prediction error. The extrapolated data are then estimated by interpolation or reconstruction of the signal from the resulting optimally spaced predictors. Finally, a Kalman-filtering-based recovery method is discussed for smoothing the data for transitioning to actual valid measurements for use in real-time control applications. The approach is illustrated on phasor data obtained from a micro-PMU system developed by the Power Standards Lab collected at 60 Hz. |
doi_str_mv | 10.1109/TIA.2020.2966186 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2377358529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8957632</ieee_id><sourcerecordid>2377358529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b842cf74d08435f7a079b3c2b60cd1d04be0a40c2b3ffa8a7c0d9f8017bc6f0b3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuC59TJxyabY61WC4UWWs8hm03slra7JunBf29Ki6eBl-edYR6EHgmMCAH1sp6NRxQojKgSglTiCg2IYgorJuQ1GgAohpVS_BbdxbgFILwkfICmq97ZFI57_Gqia4pFn9q92RXTdpdcaA_fhe9Csdp0IeG1C_tiuTExJ28mmWIZXNPa1HaHe3TjzS66h8scoq_p-3ryieeLj9lkPMeWKpJwXXFqveQNVJyVXhqQqmaW1gJsQxrgtQPDIQfMe1MZaaFRvgIiays81GyIns97-9D9HF1MetsdwyGf1JRJycqqpCpTcKZs6GIMzus-5K_CryagT7Z0tqVPtvTFVq48nSutc-4fr1QpBaPsD4hzZXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377358529</pqid></control><display><type>article</type><title>Spectrum-Based Optimal Filtering for Short-Term Phasor Data Prediction</title><source>IEEE Electronic Library (IEL)</source><creator>Konakalla, Sai Akhil Reddy ; de Callafon, Raymond A.</creator><creatorcontrib>Konakalla, Sai Akhil Reddy ; de Callafon, Raymond A.</creatorcontrib><description>This article describes a phasor data prediction and recovery algorithm that can be used to optimally extrapolate invalid or missing phasor data measurements. The basic output of the algorithm is the prediction of the phasor data when bad data quality is detected from a phasor measurement unit (PMU) at a given sampling rate. The approach is based on optimal one-sample prediction, where the sampling time between sample predictors is tuned based on the spectral content of phasor data. Optimality of prediction using such optimal filters is addressed in this article by iterative (recursive) search of the parameters of a nonlinear discrete-time integrated filter that minimizes the norm of the prediction error. The extrapolated data are then estimated by interpolation or reconstruction of the signal from the resulting optimally spaced predictors. Finally, a Kalman-filtering-based recovery method is discussed for smoothing the data for transitioning to actual valid measurements for use in real-time control applications. The approach is illustrated on phasor data obtained from a micro-PMU system developed by the Power Standards Lab collected at 60 Hz.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2020.2966186</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Data recovery ; Data smoothing ; Electric grid ; event detection ; Interpolation ; Kalman filters ; Measuring instruments ; Missing data ; Optimization ; Phasors ; Sampling ; synchrophasors</subject><ispartof>IEEE transactions on industry applications, 2020-03, Vol.56 (2), p.2069-2077</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b842cf74d08435f7a079b3c2b60cd1d04be0a40c2b3ffa8a7c0d9f8017bc6f0b3</citedby><cites>FETCH-LOGICAL-c291t-b842cf74d08435f7a079b3c2b60cd1d04be0a40c2b3ffa8a7c0d9f8017bc6f0b3</cites><orcidid>0000-0002-6809-9938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8957632$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8957632$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Konakalla, Sai Akhil Reddy</creatorcontrib><creatorcontrib>de Callafon, Raymond A.</creatorcontrib><title>Spectrum-Based Optimal Filtering for Short-Term Phasor Data Prediction</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>This article describes a phasor data prediction and recovery algorithm that can be used to optimally extrapolate invalid or missing phasor data measurements. The basic output of the algorithm is the prediction of the phasor data when bad data quality is detected from a phasor measurement unit (PMU) at a given sampling rate. The approach is based on optimal one-sample prediction, where the sampling time between sample predictors is tuned based on the spectral content of phasor data. Optimality of prediction using such optimal filters is addressed in this article by iterative (recursive) search of the parameters of a nonlinear discrete-time integrated filter that minimizes the norm of the prediction error. The extrapolated data are then estimated by interpolation or reconstruction of the signal from the resulting optimally spaced predictors. Finally, a Kalman-filtering-based recovery method is discussed for smoothing the data for transitioning to actual valid measurements for use in real-time control applications. The approach is illustrated on phasor data obtained from a micro-PMU system developed by the Power Standards Lab collected at 60 Hz.</description><subject>Algorithms</subject><subject>Data recovery</subject><subject>Data smoothing</subject><subject>Electric grid</subject><subject>event detection</subject><subject>Interpolation</subject><subject>Kalman filters</subject><subject>Measuring instruments</subject><subject>Missing data</subject><subject>Optimization</subject><subject>Phasors</subject><subject>Sampling</subject><subject>synchrophasors</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wcuC59TJxyabY61WC4UWWs8hm03slra7JunBf29Ki6eBl-edYR6EHgmMCAH1sp6NRxQojKgSglTiCg2IYgorJuQ1GgAohpVS_BbdxbgFILwkfICmq97ZFI57_Gqia4pFn9q92RXTdpdcaA_fhe9Csdp0IeG1C_tiuTExJ28mmWIZXNPa1HaHe3TjzS66h8scoq_p-3ryieeLj9lkPMeWKpJwXXFqveQNVJyVXhqQqmaW1gJsQxrgtQPDIQfMe1MZaaFRvgIiays81GyIns97-9D9HF1MetsdwyGf1JRJycqqpCpTcKZs6GIMzus-5K_CryagT7Z0tqVPtvTFVq48nSutc-4fr1QpBaPsD4hzZXw</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Konakalla, Sai Akhil Reddy</creator><creator>de Callafon, Raymond A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6809-9938</orcidid></search><sort><creationdate>202003</creationdate><title>Spectrum-Based Optimal Filtering for Short-Term Phasor Data Prediction</title><author>Konakalla, Sai Akhil Reddy ; de Callafon, Raymond A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b842cf74d08435f7a079b3c2b60cd1d04be0a40c2b3ffa8a7c0d9f8017bc6f0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Data recovery</topic><topic>Data smoothing</topic><topic>Electric grid</topic><topic>event detection</topic><topic>Interpolation</topic><topic>Kalman filters</topic><topic>Measuring instruments</topic><topic>Missing data</topic><topic>Optimization</topic><topic>Phasors</topic><topic>Sampling</topic><topic>synchrophasors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konakalla, Sai Akhil Reddy</creatorcontrib><creatorcontrib>de Callafon, Raymond A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Konakalla, Sai Akhil Reddy</au><au>de Callafon, Raymond A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectrum-Based Optimal Filtering for Short-Term Phasor Data Prediction</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2020-03</date><risdate>2020</risdate><volume>56</volume><issue>2</issue><spage>2069</spage><epage>2077</epage><pages>2069-2077</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>This article describes a phasor data prediction and recovery algorithm that can be used to optimally extrapolate invalid or missing phasor data measurements. The basic output of the algorithm is the prediction of the phasor data when bad data quality is detected from a phasor measurement unit (PMU) at a given sampling rate. The approach is based on optimal one-sample prediction, where the sampling time between sample predictors is tuned based on the spectral content of phasor data. Optimality of prediction using such optimal filters is addressed in this article by iterative (recursive) search of the parameters of a nonlinear discrete-time integrated filter that minimizes the norm of the prediction error. The extrapolated data are then estimated by interpolation or reconstruction of the signal from the resulting optimally spaced predictors. Finally, a Kalman-filtering-based recovery method is discussed for smoothing the data for transitioning to actual valid measurements for use in real-time control applications. The approach is illustrated on phasor data obtained from a micro-PMU system developed by the Power Standards Lab collected at 60 Hz.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2020.2966186</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6809-9938</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-9994 |
ispartof | IEEE transactions on industry applications, 2020-03, Vol.56 (2), p.2069-2077 |
issn | 0093-9994 1939-9367 |
language | eng |
recordid | cdi_proquest_journals_2377358529 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Data recovery Data smoothing Electric grid event detection Interpolation Kalman filters Measuring instruments Missing data Optimization Phasors Sampling synchrophasors |
title | Spectrum-Based Optimal Filtering for Short-Term Phasor Data Prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A26%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectrum-Based%20Optimal%20Filtering%20for%20Short-Term%20Phasor%20Data%20Prediction&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Konakalla,%20Sai%20Akhil%20Reddy&rft.date=2020-03&rft.volume=56&rft.issue=2&rft.spage=2069&rft.epage=2077&rft.pages=2069-2077&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2020.2966186&rft_dat=%3Cproquest_RIE%3E2377358529%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377358529&rft_id=info:pmid/&rft_ieee_id=8957632&rfr_iscdi=true |