Spectrum-Based Optimal Filtering for Short-Term Phasor Data Prediction

This article describes a phasor data prediction and recovery algorithm that can be used to optimally extrapolate invalid or missing phasor data measurements. The basic output of the algorithm is the prediction of the phasor data when bad data quality is detected from a phasor measurement unit (PMU)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2020-03, Vol.56 (2), p.2069-2077
Hauptverfasser: Konakalla, Sai Akhil Reddy, de Callafon, Raymond A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2077
container_issue 2
container_start_page 2069
container_title IEEE transactions on industry applications
container_volume 56
creator Konakalla, Sai Akhil Reddy
de Callafon, Raymond A.
description This article describes a phasor data prediction and recovery algorithm that can be used to optimally extrapolate invalid or missing phasor data measurements. The basic output of the algorithm is the prediction of the phasor data when bad data quality is detected from a phasor measurement unit (PMU) at a given sampling rate. The approach is based on optimal one-sample prediction, where the sampling time between sample predictors is tuned based on the spectral content of phasor data. Optimality of prediction using such optimal filters is addressed in this article by iterative (recursive) search of the parameters of a nonlinear discrete-time integrated filter that minimizes the norm of the prediction error. The extrapolated data are then estimated by interpolation or reconstruction of the signal from the resulting optimally spaced predictors. Finally, a Kalman-filtering-based recovery method is discussed for smoothing the data for transitioning to actual valid measurements for use in real-time control applications. The approach is illustrated on phasor data obtained from a micro-PMU system developed by the Power Standards Lab collected at 60 Hz.
doi_str_mv 10.1109/TIA.2020.2966186
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2377358529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8957632</ieee_id><sourcerecordid>2377358529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b842cf74d08435f7a079b3c2b60cd1d04be0a40c2b3ffa8a7c0d9f8017bc6f0b3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuC59TJxyabY61WC4UWWs8hm03slra7JunBf29Ki6eBl-edYR6EHgmMCAH1sp6NRxQojKgSglTiCg2IYgorJuQ1GgAohpVS_BbdxbgFILwkfICmq97ZFI57_Gqia4pFn9q92RXTdpdcaA_fhe9Csdp0IeG1C_tiuTExJ28mmWIZXNPa1HaHe3TjzS66h8scoq_p-3ryieeLj9lkPMeWKpJwXXFqveQNVJyVXhqQqmaW1gJsQxrgtQPDIQfMe1MZaaFRvgIiays81GyIns97-9D9HF1MetsdwyGf1JRJycqqpCpTcKZs6GIMzus-5K_CryagT7Z0tqVPtvTFVq48nSutc-4fr1QpBaPsD4hzZXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377358529</pqid></control><display><type>article</type><title>Spectrum-Based Optimal Filtering for Short-Term Phasor Data Prediction</title><source>IEEE Electronic Library (IEL)</source><creator>Konakalla, Sai Akhil Reddy ; de Callafon, Raymond A.</creator><creatorcontrib>Konakalla, Sai Akhil Reddy ; de Callafon, Raymond A.</creatorcontrib><description>This article describes a phasor data prediction and recovery algorithm that can be used to optimally extrapolate invalid or missing phasor data measurements. The basic output of the algorithm is the prediction of the phasor data when bad data quality is detected from a phasor measurement unit (PMU) at a given sampling rate. The approach is based on optimal one-sample prediction, where the sampling time between sample predictors is tuned based on the spectral content of phasor data. Optimality of prediction using such optimal filters is addressed in this article by iterative (recursive) search of the parameters of a nonlinear discrete-time integrated filter that minimizes the norm of the prediction error. The extrapolated data are then estimated by interpolation or reconstruction of the signal from the resulting optimally spaced predictors. Finally, a Kalman-filtering-based recovery method is discussed for smoothing the data for transitioning to actual valid measurements for use in real-time control applications. The approach is illustrated on phasor data obtained from a micro-PMU system developed by the Power Standards Lab collected at 60 Hz.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2020.2966186</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Data recovery ; Data smoothing ; Electric grid ; event detection ; Interpolation ; Kalman filters ; Measuring instruments ; Missing data ; Optimization ; Phasors ; Sampling ; synchrophasors</subject><ispartof>IEEE transactions on industry applications, 2020-03, Vol.56 (2), p.2069-2077</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b842cf74d08435f7a079b3c2b60cd1d04be0a40c2b3ffa8a7c0d9f8017bc6f0b3</citedby><cites>FETCH-LOGICAL-c291t-b842cf74d08435f7a079b3c2b60cd1d04be0a40c2b3ffa8a7c0d9f8017bc6f0b3</cites><orcidid>0000-0002-6809-9938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8957632$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8957632$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Konakalla, Sai Akhil Reddy</creatorcontrib><creatorcontrib>de Callafon, Raymond A.</creatorcontrib><title>Spectrum-Based Optimal Filtering for Short-Term Phasor Data Prediction</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>This article describes a phasor data prediction and recovery algorithm that can be used to optimally extrapolate invalid or missing phasor data measurements. The basic output of the algorithm is the prediction of the phasor data when bad data quality is detected from a phasor measurement unit (PMU) at a given sampling rate. The approach is based on optimal one-sample prediction, where the sampling time between sample predictors is tuned based on the spectral content of phasor data. Optimality of prediction using such optimal filters is addressed in this article by iterative (recursive) search of the parameters of a nonlinear discrete-time integrated filter that minimizes the norm of the prediction error. The extrapolated data are then estimated by interpolation or reconstruction of the signal from the resulting optimally spaced predictors. Finally, a Kalman-filtering-based recovery method is discussed for smoothing the data for transitioning to actual valid measurements for use in real-time control applications. The approach is illustrated on phasor data obtained from a micro-PMU system developed by the Power Standards Lab collected at 60 Hz.</description><subject>Algorithms</subject><subject>Data recovery</subject><subject>Data smoothing</subject><subject>Electric grid</subject><subject>event detection</subject><subject>Interpolation</subject><subject>Kalman filters</subject><subject>Measuring instruments</subject><subject>Missing data</subject><subject>Optimization</subject><subject>Phasors</subject><subject>Sampling</subject><subject>synchrophasors</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wcuC59TJxyabY61WC4UWWs8hm03slra7JunBf29Ki6eBl-edYR6EHgmMCAH1sp6NRxQojKgSglTiCg2IYgorJuQ1GgAohpVS_BbdxbgFILwkfICmq97ZFI57_Gqia4pFn9q92RXTdpdcaA_fhe9Csdp0IeG1C_tiuTExJ28mmWIZXNPa1HaHe3TjzS66h8scoq_p-3ryieeLj9lkPMeWKpJwXXFqveQNVJyVXhqQqmaW1gJsQxrgtQPDIQfMe1MZaaFRvgIiays81GyIns97-9D9HF1MetsdwyGf1JRJycqqpCpTcKZs6GIMzus-5K_CryagT7Z0tqVPtvTFVq48nSutc-4fr1QpBaPsD4hzZXw</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Konakalla, Sai Akhil Reddy</creator><creator>de Callafon, Raymond A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6809-9938</orcidid></search><sort><creationdate>202003</creationdate><title>Spectrum-Based Optimal Filtering for Short-Term Phasor Data Prediction</title><author>Konakalla, Sai Akhil Reddy ; de Callafon, Raymond A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b842cf74d08435f7a079b3c2b60cd1d04be0a40c2b3ffa8a7c0d9f8017bc6f0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Data recovery</topic><topic>Data smoothing</topic><topic>Electric grid</topic><topic>event detection</topic><topic>Interpolation</topic><topic>Kalman filters</topic><topic>Measuring instruments</topic><topic>Missing data</topic><topic>Optimization</topic><topic>Phasors</topic><topic>Sampling</topic><topic>synchrophasors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konakalla, Sai Akhil Reddy</creatorcontrib><creatorcontrib>de Callafon, Raymond A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Konakalla, Sai Akhil Reddy</au><au>de Callafon, Raymond A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectrum-Based Optimal Filtering for Short-Term Phasor Data Prediction</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2020-03</date><risdate>2020</risdate><volume>56</volume><issue>2</issue><spage>2069</spage><epage>2077</epage><pages>2069-2077</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>This article describes a phasor data prediction and recovery algorithm that can be used to optimally extrapolate invalid or missing phasor data measurements. The basic output of the algorithm is the prediction of the phasor data when bad data quality is detected from a phasor measurement unit (PMU) at a given sampling rate. The approach is based on optimal one-sample prediction, where the sampling time between sample predictors is tuned based on the spectral content of phasor data. Optimality of prediction using such optimal filters is addressed in this article by iterative (recursive) search of the parameters of a nonlinear discrete-time integrated filter that minimizes the norm of the prediction error. The extrapolated data are then estimated by interpolation or reconstruction of the signal from the resulting optimally spaced predictors. Finally, a Kalman-filtering-based recovery method is discussed for smoothing the data for transitioning to actual valid measurements for use in real-time control applications. The approach is illustrated on phasor data obtained from a micro-PMU system developed by the Power Standards Lab collected at 60 Hz.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2020.2966186</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6809-9938</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-9994
ispartof IEEE transactions on industry applications, 2020-03, Vol.56 (2), p.2069-2077
issn 0093-9994
1939-9367
language eng
recordid cdi_proquest_journals_2377358529
source IEEE Electronic Library (IEL)
subjects Algorithms
Data recovery
Data smoothing
Electric grid
event detection
Interpolation
Kalman filters
Measuring instruments
Missing data
Optimization
Phasors
Sampling
synchrophasors
title Spectrum-Based Optimal Filtering for Short-Term Phasor Data Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A26%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectrum-Based%20Optimal%20Filtering%20for%20Short-Term%20Phasor%20Data%20Prediction&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Konakalla,%20Sai%20Akhil%20Reddy&rft.date=2020-03&rft.volume=56&rft.issue=2&rft.spage=2069&rft.epage=2077&rft.pages=2069-2077&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2020.2966186&rft_dat=%3Cproquest_RIE%3E2377358529%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377358529&rft_id=info:pmid/&rft_ieee_id=8957632&rfr_iscdi=true