A Two-Stage Scheduling RPC Based on Time-Varying Coefficient Information of State-Dependent ARX Model

A two-stage scheduling robust predictive control (RPC) algorithm, which is based on the time-varying coefficient information of the state-dependent ARX (SD-ARX) model, is designed for the output tracking control of a class of nonlinear systems. First, by using the parameter variation range informati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-15
Hauptverfasser: Wu, Jun, Xie, Minghua, Zhu, Peidong, Zhou, Feng, Cao, Lihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 2020
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2020
creator Wu, Jun
Xie, Minghua
Zhu, Peidong
Zhou, Feng
Cao, Lihua
description A two-stage scheduling robust predictive control (RPC) algorithm, which is based on the time-varying coefficient information of the state-dependent ARX (SD-ARX) model, is designed for the output tracking control of a class of nonlinear systems. First, by using the parameter variation range information of the SD-ARX, a strategy for constructing the system’s polytopic model is designed. To further reduce the conservativeness of the convex polytopic sets which are designed to wrap the system’s future dynamics, the variation range information of the SD-ARX model’s parameters is also considered and compressed. In this method, the polytopic state-space model of the system is constructed directly based on the special structure of the SD-ARX model itself, and there is no need to make such assumption that the bounds on the parameter’s variation range in the system model are known or measurable. And then, a two-stage scheduling RPC algorithm is designed for the output tracking control. A numerical example is presented to demonstrate the effectiveness of the proposed RPC strategy.
doi_str_mv 10.1155/2020/5319408
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2377330573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377330573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-4f47e3863543ddee1e3f19ed81247c70a25723fab57aefcaf2732c33ccd5d00d3</originalsourceid><addsrcrecordid>eNqF0N9LwzAQB_AgCs7pm88S8FHjklyzdI-z_hpMlG3K3kpMLlvH1sy2Y_jf29KBj77kAvfhjvsScin4nRBK9SSXvKdADCIeH5GOUH1gSkT6uP5zGTEhYX5KzspyxbkUSsQdgkM62wc2rcwC6dQu0e3WWb6gk_eE3psSHQ05nWUbZJ-m-Gk6SUDvM5thXtFR7kOxMVVWo-BpPaVC9oBbzF3THk7m9DU4XJ-TE2_WJV4capd8PD3Okhc2fnseJcMxsyB0xSIfaYS4DyoC5xAFghcDdLGQkbaaG6m0BG--lDborfFSg7QA1jrlOHfQJdft3G0RvndYVukq7Iq8XplK0BqAq_rpkttW2SKUZYE-3RbZpj4vFTxtgkybINNDkDW_afkyy53ZZ__pq1ZjbdCbPy0GKu7H8AsDO3ta</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377330573</pqid></control><display><type>article</type><title>A Two-Stage Scheduling RPC Based on Time-Varying Coefficient Information of State-Dependent ARX Model</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><source>Alma/SFX Local Collection</source><creator>Wu, Jun ; Xie, Minghua ; Zhu, Peidong ; Zhou, Feng ; Cao, Lihua</creator><contributor>Vázquez, Carlos-Renato ; Carlos-Renato Vázquez</contributor><creatorcontrib>Wu, Jun ; Xie, Minghua ; Zhu, Peidong ; Zhou, Feng ; Cao, Lihua ; Vázquez, Carlos-Renato ; Carlos-Renato Vázquez</creatorcontrib><description>A two-stage scheduling robust predictive control (RPC) algorithm, which is based on the time-varying coefficient information of the state-dependent ARX (SD-ARX) model, is designed for the output tracking control of a class of nonlinear systems. First, by using the parameter variation range information of the SD-ARX, a strategy for constructing the system’s polytopic model is designed. To further reduce the conservativeness of the convex polytopic sets which are designed to wrap the system’s future dynamics, the variation range information of the SD-ARX model’s parameters is also considered and compressed. In this method, the polytopic state-space model of the system is constructed directly based on the special structure of the SD-ARX model itself, and there is no need to make such assumption that the bounds on the parameter’s variation range in the system model are known or measurable. And then, a two-stage scheduling RPC algorithm is designed for the output tracking control. A numerical example is presented to demonstrate the effectiveness of the proposed RPC strategy.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2020/5319408</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Controllers ; Design ; Mathematical problems ; Neural networks ; Nonlinear systems ; Parameter estimation ; Parameters ; Predictive control ; Robust control ; Scheduling ; State space models ; Tracking control</subject><ispartof>Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-15</ispartof><rights>Copyright © 2020 Feng Zhou et al.</rights><rights>Copyright © 2020 Feng Zhou et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c317t-4f47e3863543ddee1e3f19ed81247c70a25723fab57aefcaf2732c33ccd5d00d3</cites><orcidid>0000-0002-6463-5318 ; 0000-0002-5513-743X ; 0000-0003-3125-329X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids></links><search><contributor>Vázquez, Carlos-Renato</contributor><contributor>Carlos-Renato Vázquez</contributor><creatorcontrib>Wu, Jun</creatorcontrib><creatorcontrib>Xie, Minghua</creatorcontrib><creatorcontrib>Zhu, Peidong</creatorcontrib><creatorcontrib>Zhou, Feng</creatorcontrib><creatorcontrib>Cao, Lihua</creatorcontrib><title>A Two-Stage Scheduling RPC Based on Time-Varying Coefficient Information of State-Dependent ARX Model</title><title>Mathematical problems in engineering</title><description>A two-stage scheduling robust predictive control (RPC) algorithm, which is based on the time-varying coefficient information of the state-dependent ARX (SD-ARX) model, is designed for the output tracking control of a class of nonlinear systems. First, by using the parameter variation range information of the SD-ARX, a strategy for constructing the system’s polytopic model is designed. To further reduce the conservativeness of the convex polytopic sets which are designed to wrap the system’s future dynamics, the variation range information of the SD-ARX model’s parameters is also considered and compressed. In this method, the polytopic state-space model of the system is constructed directly based on the special structure of the SD-ARX model itself, and there is no need to make such assumption that the bounds on the parameter’s variation range in the system model are known or measurable. And then, a two-stage scheduling RPC algorithm is designed for the output tracking control. A numerical example is presented to demonstrate the effectiveness of the proposed RPC strategy.</description><subject>Algorithms</subject><subject>Controllers</subject><subject>Design</subject><subject>Mathematical problems</subject><subject>Neural networks</subject><subject>Nonlinear systems</subject><subject>Parameter estimation</subject><subject>Parameters</subject><subject>Predictive control</subject><subject>Robust control</subject><subject>Scheduling</subject><subject>State space models</subject><subject>Tracking control</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0N9LwzAQB_AgCs7pm88S8FHjklyzdI-z_hpMlG3K3kpMLlvH1sy2Y_jf29KBj77kAvfhjvsScin4nRBK9SSXvKdADCIeH5GOUH1gSkT6uP5zGTEhYX5KzspyxbkUSsQdgkM62wc2rcwC6dQu0e3WWb6gk_eE3psSHQ05nWUbZJ-m-Gk6SUDvM5thXtFR7kOxMVVWo-BpPaVC9oBbzF3THk7m9DU4XJ-TE2_WJV4capd8PD3Okhc2fnseJcMxsyB0xSIfaYS4DyoC5xAFghcDdLGQkbaaG6m0BG--lDborfFSg7QA1jrlOHfQJdft3G0RvndYVukq7Iq8XplK0BqAq_rpkttW2SKUZYE-3RbZpj4vFTxtgkybINNDkDW_afkyy53ZZ__pq1ZjbdCbPy0GKu7H8AsDO3ta</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Wu, Jun</creator><creator>Xie, Minghua</creator><creator>Zhu, Peidong</creator><creator>Zhou, Feng</creator><creator>Cao, Lihua</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-6463-5318</orcidid><orcidid>https://orcid.org/0000-0002-5513-743X</orcidid><orcidid>https://orcid.org/0000-0003-3125-329X</orcidid></search><sort><creationdate>2020</creationdate><title>A Two-Stage Scheduling RPC Based on Time-Varying Coefficient Information of State-Dependent ARX Model</title><author>Wu, Jun ; Xie, Minghua ; Zhu, Peidong ; Zhou, Feng ; Cao, Lihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-4f47e3863543ddee1e3f19ed81247c70a25723fab57aefcaf2732c33ccd5d00d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Controllers</topic><topic>Design</topic><topic>Mathematical problems</topic><topic>Neural networks</topic><topic>Nonlinear systems</topic><topic>Parameter estimation</topic><topic>Parameters</topic><topic>Predictive control</topic><topic>Robust control</topic><topic>Scheduling</topic><topic>State space models</topic><topic>Tracking control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Jun</creatorcontrib><creatorcontrib>Xie, Minghua</creatorcontrib><creatorcontrib>Zhu, Peidong</creatorcontrib><creatorcontrib>Zhou, Feng</creatorcontrib><creatorcontrib>Cao, Lihua</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Jun</au><au>Xie, Minghua</au><au>Zhu, Peidong</au><au>Zhou, Feng</au><au>Cao, Lihua</au><au>Vázquez, Carlos-Renato</au><au>Carlos-Renato Vázquez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Two-Stage Scheduling RPC Based on Time-Varying Coefficient Information of State-Dependent ARX Model</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>A two-stage scheduling robust predictive control (RPC) algorithm, which is based on the time-varying coefficient information of the state-dependent ARX (SD-ARX) model, is designed for the output tracking control of a class of nonlinear systems. First, by using the parameter variation range information of the SD-ARX, a strategy for constructing the system’s polytopic model is designed. To further reduce the conservativeness of the convex polytopic sets which are designed to wrap the system’s future dynamics, the variation range information of the SD-ARX model’s parameters is also considered and compressed. In this method, the polytopic state-space model of the system is constructed directly based on the special structure of the SD-ARX model itself, and there is no need to make such assumption that the bounds on the parameter’s variation range in the system model are known or measurable. And then, a two-stage scheduling RPC algorithm is designed for the output tracking control. A numerical example is presented to demonstrate the effectiveness of the proposed RPC strategy.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/5319408</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6463-5318</orcidid><orcidid>https://orcid.org/0000-0002-5513-743X</orcidid><orcidid>https://orcid.org/0000-0003-3125-329X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-15
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2377330573
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access; Alma/SFX Local Collection
subjects Algorithms
Controllers
Design
Mathematical problems
Neural networks
Nonlinear systems
Parameter estimation
Parameters
Predictive control
Robust control
Scheduling
State space models
Tracking control
title A Two-Stage Scheduling RPC Based on Time-Varying Coefficient Information of State-Dependent ARX Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A19%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Two-Stage%20Scheduling%20RPC%20Based%20on%20Time-Varying%20Coefficient%20Information%20of%20State-Dependent%20ARX%20Model&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Wu,%20Jun&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2020/5319408&rft_dat=%3Cproquest_cross%3E2377330573%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377330573&rft_id=info:pmid/&rfr_iscdi=true