Research of the combined reforming of bio‐oil model compound for hydrogen production
The combination of steam and CO2 reforming of bio‐oil is proposed in this article. The combined reforming can make good use of the advantages of steam reforming and CO2 reforming. The results indicate that H2 yield, potential H2 yield, and H2/CO were 60.23, 81.97, and 2.77%, respectively, at the con...
Gespeichert in:
Veröffentlicht in: | Environmental progress 2020-03, Vol.39 (2), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Environmental progress |
container_volume | 39 |
creator | Xu, Qingli Feng, Peng Huang, Kai Xin, Shanzhi Wei, Ting Liao, Lifang Yan, Yongjie |
description | The combination of steam and CO2 reforming of bio‐oil is proposed in this article. The combined reforming can make good use of the advantages of steam reforming and CO2 reforming. The results indicate that H2 yield, potential H2 yield, and H2/CO were 60.23, 81.97, and 2.77%, respectively, at the condition of 700°C and bio‐oil:CO2:H2O = 1:0.5:1.5. Bio‐oil:CO2:H2O has a significant effect on the H2 yield, potential H2 yield, and H2/CO in the process of combined reforming. A different ratio of H2/CO can be obtained by adjusting the proportion of bio‐oil:CO2:H2O, which can meet different industry requirements. The results of X‐ray diffraction and scanning electron microscope analyses indicate that the catalyst deactivation was the result of a combination of carbon deposition and Ni grain sintering, and the carbon deposition was a main reason for the catalyst deactivation. |
doi_str_mv | 10.1002/ep.13320 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2377229857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377229857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3300-68cda3afcc39a271fa612f8882a6f67b51185005e40934239a7bef3d64915d73</originalsourceid><addsrcrecordid>eNp10M1KxDAQB_AgCq6r4CMEvHjpmq827VGW9QMWFFm8hjQf2yxtU5MtsjcfwWf0SWytePM0A_NjhvkDcInRAiNEbky3wJQSdARmuGAs4SxFx389I6fgLMYdQhllRTEDry8mGhlUBb2F-8pA5ZvStUbDYKwPjWu346R0_uvj07saNl6belSd71sNBwOrgw5-a1rYBa97tXe-PQcnVtbRXPzWOdjcrTbLh2T9dP-4vF0nilKEkixXWlJplaKFJBxbmWFi8zwnMrMZL1OM8xSh1DBUUEYGxEtjqc5YgVPN6RxcTWuHy2-9iXux831oh4uCUM4JKfJ0VNeTUsHHOPwluuAaGQ4CIzGGJkwnfkIbaDLRd1ebw79OrJ4n_w3fBG1O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377229857</pqid></control><display><type>article</type><title>Research of the combined reforming of bio‐oil model compound for hydrogen production</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xu, Qingli ; Feng, Peng ; Huang, Kai ; Xin, Shanzhi ; Wei, Ting ; Liao, Lifang ; Yan, Yongjie</creator><creatorcontrib>Xu, Qingli ; Feng, Peng ; Huang, Kai ; Xin, Shanzhi ; Wei, Ting ; Liao, Lifang ; Yan, Yongjie</creatorcontrib><description>The combination of steam and CO2 reforming of bio‐oil is proposed in this article. The combined reforming can make good use of the advantages of steam reforming and CO2 reforming. The results indicate that H2 yield, potential H2 yield, and H2/CO were 60.23, 81.97, and 2.77%, respectively, at the condition of 700°C and bio‐oil:CO2:H2O = 1:0.5:1.5. Bio‐oil:CO2:H2O has a significant effect on the H2 yield, potential H2 yield, and H2/CO in the process of combined reforming. A different ratio of H2/CO can be obtained by adjusting the proportion of bio‐oil:CO2:H2O, which can meet different industry requirements. The results of X‐ray diffraction and scanning electron microscope analyses indicate that the catalyst deactivation was the result of a combination of carbon deposition and Ni grain sintering, and the carbon deposition was a main reason for the catalyst deactivation.</description><identifier>ISSN: 1944-7442</identifier><identifier>EISSN: 1944-7450</identifier><identifier>DOI: 10.1002/ep.13320</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>bio‐oil ; Carbon dioxide ; Carbon monoxide ; Catalysts ; CO2 reforming ; combined‐reforming ; Deactivation ; Deposition ; hydrogen ; Hydrogen production ; Oil ; Reforming ; Scanning electron microscopy ; Steam ; steam reforming ; Yield</subject><ispartof>Environmental progress, 2020-03, Vol.39 (2), p.n/a</ispartof><rights>2019 American Institute of Chemical Engineers</rights><rights>2020 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3300-68cda3afcc39a271fa612f8882a6f67b51185005e40934239a7bef3d64915d73</citedby><cites>FETCH-LOGICAL-c3300-68cda3afcc39a271fa612f8882a6f67b51185005e40934239a7bef3d64915d73</cites><orcidid>0000-0002-9339-2204</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fep.13320$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fep.13320$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Xu, Qingli</creatorcontrib><creatorcontrib>Feng, Peng</creatorcontrib><creatorcontrib>Huang, Kai</creatorcontrib><creatorcontrib>Xin, Shanzhi</creatorcontrib><creatorcontrib>Wei, Ting</creatorcontrib><creatorcontrib>Liao, Lifang</creatorcontrib><creatorcontrib>Yan, Yongjie</creatorcontrib><title>Research of the combined reforming of bio‐oil model compound for hydrogen production</title><title>Environmental progress</title><description>The combination of steam and CO2 reforming of bio‐oil is proposed in this article. The combined reforming can make good use of the advantages of steam reforming and CO2 reforming. The results indicate that H2 yield, potential H2 yield, and H2/CO were 60.23, 81.97, and 2.77%, respectively, at the condition of 700°C and bio‐oil:CO2:H2O = 1:0.5:1.5. Bio‐oil:CO2:H2O has a significant effect on the H2 yield, potential H2 yield, and H2/CO in the process of combined reforming. A different ratio of H2/CO can be obtained by adjusting the proportion of bio‐oil:CO2:H2O, which can meet different industry requirements. The results of X‐ray diffraction and scanning electron microscope analyses indicate that the catalyst deactivation was the result of a combination of carbon deposition and Ni grain sintering, and the carbon deposition was a main reason for the catalyst deactivation.</description><subject>bio‐oil</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Catalysts</subject><subject>CO2 reforming</subject><subject>combined‐reforming</subject><subject>Deactivation</subject><subject>Deposition</subject><subject>hydrogen</subject><subject>Hydrogen production</subject><subject>Oil</subject><subject>Reforming</subject><subject>Scanning electron microscopy</subject><subject>Steam</subject><subject>steam reforming</subject><subject>Yield</subject><issn>1944-7442</issn><issn>1944-7450</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10M1KxDAQB_AgCq6r4CMEvHjpmq827VGW9QMWFFm8hjQf2yxtU5MtsjcfwWf0SWytePM0A_NjhvkDcInRAiNEbky3wJQSdARmuGAs4SxFx389I6fgLMYdQhllRTEDry8mGhlUBb2F-8pA5ZvStUbDYKwPjWu346R0_uvj07saNl6belSd71sNBwOrgw5-a1rYBa97tXe-PQcnVtbRXPzWOdjcrTbLh2T9dP-4vF0nilKEkixXWlJplaKFJBxbmWFi8zwnMrMZL1OM8xSh1DBUUEYGxEtjqc5YgVPN6RxcTWuHy2-9iXux831oh4uCUM4JKfJ0VNeTUsHHOPwluuAaGQ4CIzGGJkwnfkIbaDLRd1ebw79OrJ4n_w3fBG1O</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Xu, Qingli</creator><creator>Feng, Peng</creator><creator>Huang, Kai</creator><creator>Xin, Shanzhi</creator><creator>Wei, Ting</creator><creator>Liao, Lifang</creator><creator>Yan, Yongjie</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons, Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7U6</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9339-2204</orcidid></search><sort><creationdate>202003</creationdate><title>Research of the combined reforming of bio‐oil model compound for hydrogen production</title><author>Xu, Qingli ; Feng, Peng ; Huang, Kai ; Xin, Shanzhi ; Wei, Ting ; Liao, Lifang ; Yan, Yongjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3300-68cda3afcc39a271fa612f8882a6f67b51185005e40934239a7bef3d64915d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>bio‐oil</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Catalysts</topic><topic>CO2 reforming</topic><topic>combined‐reforming</topic><topic>Deactivation</topic><topic>Deposition</topic><topic>hydrogen</topic><topic>Hydrogen production</topic><topic>Oil</topic><topic>Reforming</topic><topic>Scanning electron microscopy</topic><topic>Steam</topic><topic>steam reforming</topic><topic>Yield</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Qingli</creatorcontrib><creatorcontrib>Feng, Peng</creatorcontrib><creatorcontrib>Huang, Kai</creatorcontrib><creatorcontrib>Xin, Shanzhi</creatorcontrib><creatorcontrib>Wei, Ting</creatorcontrib><creatorcontrib>Liao, Lifang</creatorcontrib><creatorcontrib>Yan, Yongjie</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Qingli</au><au>Feng, Peng</au><au>Huang, Kai</au><au>Xin, Shanzhi</au><au>Wei, Ting</au><au>Liao, Lifang</au><au>Yan, Yongjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research of the combined reforming of bio‐oil model compound for hydrogen production</atitle><jtitle>Environmental progress</jtitle><date>2020-03</date><risdate>2020</risdate><volume>39</volume><issue>2</issue><epage>n/a</epage><issn>1944-7442</issn><eissn>1944-7450</eissn><abstract>The combination of steam and CO2 reforming of bio‐oil is proposed in this article. The combined reforming can make good use of the advantages of steam reforming and CO2 reforming. The results indicate that H2 yield, potential H2 yield, and H2/CO were 60.23, 81.97, and 2.77%, respectively, at the condition of 700°C and bio‐oil:CO2:H2O = 1:0.5:1.5. Bio‐oil:CO2:H2O has a significant effect on the H2 yield, potential H2 yield, and H2/CO in the process of combined reforming. A different ratio of H2/CO can be obtained by adjusting the proportion of bio‐oil:CO2:H2O, which can meet different industry requirements. The results of X‐ray diffraction and scanning electron microscope analyses indicate that the catalyst deactivation was the result of a combination of carbon deposition and Ni grain sintering, and the carbon deposition was a main reason for the catalyst deactivation.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/ep.13320</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9339-2204</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-7442 |
ispartof | Environmental progress, 2020-03, Vol.39 (2), p.n/a |
issn | 1944-7442 1944-7450 |
language | eng |
recordid | cdi_proquest_journals_2377229857 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | bio‐oil Carbon dioxide Carbon monoxide Catalysts CO2 reforming combined‐reforming Deactivation Deposition hydrogen Hydrogen production Oil Reforming Scanning electron microscopy Steam steam reforming Yield |
title | Research of the combined reforming of bio‐oil model compound for hydrogen production |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A07%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20of%20the%20combined%20reforming%20of%20bio%E2%80%90oil%20model%20compound%20for%20hydrogen%20production&rft.jtitle=Environmental%20progress&rft.au=Xu,%20Qingli&rft.date=2020-03&rft.volume=39&rft.issue=2&rft.epage=n/a&rft.issn=1944-7442&rft.eissn=1944-7450&rft_id=info:doi/10.1002/ep.13320&rft_dat=%3Cproquest_cross%3E2377229857%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377229857&rft_id=info:pmid/&rfr_iscdi=true |