Research of the combined reforming of bio‐oil model compound for hydrogen production

The combination of steam and CO2 reforming of bio‐oil is proposed in this article. The combined reforming can make good use of the advantages of steam reforming and CO2 reforming. The results indicate that H2 yield, potential H2 yield, and H2/CO were 60.23, 81.97, and 2.77%, respectively, at the con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental progress 2020-03, Vol.39 (2), p.n/a
Hauptverfasser: Xu, Qingli, Feng, Peng, Huang, Kai, Xin, Shanzhi, Wei, Ting, Liao, Lifang, Yan, Yongjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title Environmental progress
container_volume 39
creator Xu, Qingli
Feng, Peng
Huang, Kai
Xin, Shanzhi
Wei, Ting
Liao, Lifang
Yan, Yongjie
description The combination of steam and CO2 reforming of bio‐oil is proposed in this article. The combined reforming can make good use of the advantages of steam reforming and CO2 reforming. The results indicate that H2 yield, potential H2 yield, and H2/CO were 60.23, 81.97, and 2.77%, respectively, at the condition of 700°C and bio‐oil:CO2:H2O = 1:0.5:1.5. Bio‐oil:CO2:H2O has a significant effect on the H2 yield, potential H2 yield, and H2/CO in the process of combined reforming. A different ratio of H2/CO can be obtained by adjusting the proportion of bio‐oil:CO2:H2O, which can meet different industry requirements. The results of X‐ray diffraction and scanning electron microscope analyses indicate that the catalyst deactivation was the result of a combination of carbon deposition and Ni grain sintering, and the carbon deposition was a main reason for the catalyst deactivation.
doi_str_mv 10.1002/ep.13320
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2377229857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377229857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3300-68cda3afcc39a271fa612f8882a6f67b51185005e40934239a7bef3d64915d73</originalsourceid><addsrcrecordid>eNp10M1KxDAQB_AgCq6r4CMEvHjpmq827VGW9QMWFFm8hjQf2yxtU5MtsjcfwWf0SWytePM0A_NjhvkDcInRAiNEbky3wJQSdARmuGAs4SxFx389I6fgLMYdQhllRTEDry8mGhlUBb2F-8pA5ZvStUbDYKwPjWu346R0_uvj07saNl6belSd71sNBwOrgw5-a1rYBa97tXe-PQcnVtbRXPzWOdjcrTbLh2T9dP-4vF0nilKEkixXWlJplaKFJBxbmWFi8zwnMrMZL1OM8xSh1DBUUEYGxEtjqc5YgVPN6RxcTWuHy2-9iXux831oh4uCUM4JKfJ0VNeTUsHHOPwluuAaGQ4CIzGGJkwnfkIbaDLRd1ebw79OrJ4n_w3fBG1O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377229857</pqid></control><display><type>article</type><title>Research of the combined reforming of bio‐oil model compound for hydrogen production</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xu, Qingli ; Feng, Peng ; Huang, Kai ; Xin, Shanzhi ; Wei, Ting ; Liao, Lifang ; Yan, Yongjie</creator><creatorcontrib>Xu, Qingli ; Feng, Peng ; Huang, Kai ; Xin, Shanzhi ; Wei, Ting ; Liao, Lifang ; Yan, Yongjie</creatorcontrib><description>The combination of steam and CO2 reforming of bio‐oil is proposed in this article. The combined reforming can make good use of the advantages of steam reforming and CO2 reforming. The results indicate that H2 yield, potential H2 yield, and H2/CO were 60.23, 81.97, and 2.77%, respectively, at the condition of 700°C and bio‐oil:CO2:H2O = 1:0.5:1.5. Bio‐oil:CO2:H2O has a significant effect on the H2 yield, potential H2 yield, and H2/CO in the process of combined reforming. A different ratio of H2/CO can be obtained by adjusting the proportion of bio‐oil:CO2:H2O, which can meet different industry requirements. The results of X‐ray diffraction and scanning electron microscope analyses indicate that the catalyst deactivation was the result of a combination of carbon deposition and Ni grain sintering, and the carbon deposition was a main reason for the catalyst deactivation.</description><identifier>ISSN: 1944-7442</identifier><identifier>EISSN: 1944-7450</identifier><identifier>DOI: 10.1002/ep.13320</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>bio‐oil ; Carbon dioxide ; Carbon monoxide ; Catalysts ; CO2 reforming ; combined‐reforming ; Deactivation ; Deposition ; hydrogen ; Hydrogen production ; Oil ; Reforming ; Scanning electron microscopy ; Steam ; steam reforming ; Yield</subject><ispartof>Environmental progress, 2020-03, Vol.39 (2), p.n/a</ispartof><rights>2019 American Institute of Chemical Engineers</rights><rights>2020 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3300-68cda3afcc39a271fa612f8882a6f67b51185005e40934239a7bef3d64915d73</citedby><cites>FETCH-LOGICAL-c3300-68cda3afcc39a271fa612f8882a6f67b51185005e40934239a7bef3d64915d73</cites><orcidid>0000-0002-9339-2204</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fep.13320$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fep.13320$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Xu, Qingli</creatorcontrib><creatorcontrib>Feng, Peng</creatorcontrib><creatorcontrib>Huang, Kai</creatorcontrib><creatorcontrib>Xin, Shanzhi</creatorcontrib><creatorcontrib>Wei, Ting</creatorcontrib><creatorcontrib>Liao, Lifang</creatorcontrib><creatorcontrib>Yan, Yongjie</creatorcontrib><title>Research of the combined reforming of bio‐oil model compound for hydrogen production</title><title>Environmental progress</title><description>The combination of steam and CO2 reforming of bio‐oil is proposed in this article. The combined reforming can make good use of the advantages of steam reforming and CO2 reforming. The results indicate that H2 yield, potential H2 yield, and H2/CO were 60.23, 81.97, and 2.77%, respectively, at the condition of 700°C and bio‐oil:CO2:H2O = 1:0.5:1.5. Bio‐oil:CO2:H2O has a significant effect on the H2 yield, potential H2 yield, and H2/CO in the process of combined reforming. A different ratio of H2/CO can be obtained by adjusting the proportion of bio‐oil:CO2:H2O, which can meet different industry requirements. The results of X‐ray diffraction and scanning electron microscope analyses indicate that the catalyst deactivation was the result of a combination of carbon deposition and Ni grain sintering, and the carbon deposition was a main reason for the catalyst deactivation.</description><subject>bio‐oil</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Catalysts</subject><subject>CO2 reforming</subject><subject>combined‐reforming</subject><subject>Deactivation</subject><subject>Deposition</subject><subject>hydrogen</subject><subject>Hydrogen production</subject><subject>Oil</subject><subject>Reforming</subject><subject>Scanning electron microscopy</subject><subject>Steam</subject><subject>steam reforming</subject><subject>Yield</subject><issn>1944-7442</issn><issn>1944-7450</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10M1KxDAQB_AgCq6r4CMEvHjpmq827VGW9QMWFFm8hjQf2yxtU5MtsjcfwWf0SWytePM0A_NjhvkDcInRAiNEbky3wJQSdARmuGAs4SxFx389I6fgLMYdQhllRTEDry8mGhlUBb2F-8pA5ZvStUbDYKwPjWu346R0_uvj07saNl6belSd71sNBwOrgw5-a1rYBa97tXe-PQcnVtbRXPzWOdjcrTbLh2T9dP-4vF0nilKEkixXWlJplaKFJBxbmWFi8zwnMrMZL1OM8xSh1DBUUEYGxEtjqc5YgVPN6RxcTWuHy2-9iXux831oh4uCUM4JKfJ0VNeTUsHHOPwluuAaGQ4CIzGGJkwnfkIbaDLRd1ebw79OrJ4n_w3fBG1O</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Xu, Qingli</creator><creator>Feng, Peng</creator><creator>Huang, Kai</creator><creator>Xin, Shanzhi</creator><creator>Wei, Ting</creator><creator>Liao, Lifang</creator><creator>Yan, Yongjie</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons, Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7U6</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9339-2204</orcidid></search><sort><creationdate>202003</creationdate><title>Research of the combined reforming of bio‐oil model compound for hydrogen production</title><author>Xu, Qingli ; Feng, Peng ; Huang, Kai ; Xin, Shanzhi ; Wei, Ting ; Liao, Lifang ; Yan, Yongjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3300-68cda3afcc39a271fa612f8882a6f67b51185005e40934239a7bef3d64915d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>bio‐oil</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Catalysts</topic><topic>CO2 reforming</topic><topic>combined‐reforming</topic><topic>Deactivation</topic><topic>Deposition</topic><topic>hydrogen</topic><topic>Hydrogen production</topic><topic>Oil</topic><topic>Reforming</topic><topic>Scanning electron microscopy</topic><topic>Steam</topic><topic>steam reforming</topic><topic>Yield</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Qingli</creatorcontrib><creatorcontrib>Feng, Peng</creatorcontrib><creatorcontrib>Huang, Kai</creatorcontrib><creatorcontrib>Xin, Shanzhi</creatorcontrib><creatorcontrib>Wei, Ting</creatorcontrib><creatorcontrib>Liao, Lifang</creatorcontrib><creatorcontrib>Yan, Yongjie</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Qingli</au><au>Feng, Peng</au><au>Huang, Kai</au><au>Xin, Shanzhi</au><au>Wei, Ting</au><au>Liao, Lifang</au><au>Yan, Yongjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research of the combined reforming of bio‐oil model compound for hydrogen production</atitle><jtitle>Environmental progress</jtitle><date>2020-03</date><risdate>2020</risdate><volume>39</volume><issue>2</issue><epage>n/a</epage><issn>1944-7442</issn><eissn>1944-7450</eissn><abstract>The combination of steam and CO2 reforming of bio‐oil is proposed in this article. The combined reforming can make good use of the advantages of steam reforming and CO2 reforming. The results indicate that H2 yield, potential H2 yield, and H2/CO were 60.23, 81.97, and 2.77%, respectively, at the condition of 700°C and bio‐oil:CO2:H2O = 1:0.5:1.5. Bio‐oil:CO2:H2O has a significant effect on the H2 yield, potential H2 yield, and H2/CO in the process of combined reforming. A different ratio of H2/CO can be obtained by adjusting the proportion of bio‐oil:CO2:H2O, which can meet different industry requirements. The results of X‐ray diffraction and scanning electron microscope analyses indicate that the catalyst deactivation was the result of a combination of carbon deposition and Ni grain sintering, and the carbon deposition was a main reason for the catalyst deactivation.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/ep.13320</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9339-2204</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-7442
ispartof Environmental progress, 2020-03, Vol.39 (2), p.n/a
issn 1944-7442
1944-7450
language eng
recordid cdi_proquest_journals_2377229857
source Wiley Online Library Journals Frontfile Complete
subjects bio‐oil
Carbon dioxide
Carbon monoxide
Catalysts
CO2 reforming
combined‐reforming
Deactivation
Deposition
hydrogen
Hydrogen production
Oil
Reforming
Scanning electron microscopy
Steam
steam reforming
Yield
title Research of the combined reforming of bio‐oil model compound for hydrogen production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A07%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20of%20the%20combined%20reforming%20of%20bio%E2%80%90oil%20model%20compound%20for%20hydrogen%20production&rft.jtitle=Environmental%20progress&rft.au=Xu,%20Qingli&rft.date=2020-03&rft.volume=39&rft.issue=2&rft.epage=n/a&rft.issn=1944-7442&rft.eissn=1944-7450&rft_id=info:doi/10.1002/ep.13320&rft_dat=%3Cproquest_cross%3E2377229857%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377229857&rft_id=info:pmid/&rfr_iscdi=true