Exploratory research in alternative raw material sources and reformulation for industrial soda‐lime‐silica glass batches
For energy saving and CO2 emissions reduction, in addition to extending the range of suitable raw material sources for glass manufacture, compositional reformulation, and alternative raw materials have been studied in the context of industrial container and float‐type soda‐lime‐silica (SLS) glasses....
Gespeichert in:
Veröffentlicht in: | International journal of applied glass science 2020-04, Vol.11 (2), p.340-356 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 356 |
---|---|
container_issue | 2 |
container_start_page | 340 |
container_title | International journal of applied glass science |
container_volume | 11 |
creator | Deng, Wei Spathi, Charikleia Coulbeck, Teig Erhan, Kilinc Backhouse, Daniel Marshall, Martyn Ireson, Robert Bingham, Paul A. |
description | For energy saving and CO2 emissions reduction, in addition to extending the range of suitable raw material sources for glass manufacture, compositional reformulation, and alternative raw materials have been studied in the context of industrial container and float‐type soda‐lime‐silica (SLS) glasses. Lithium, potassium, and boron were applied to modify benchmark glass compositions. Reformulation impacts on key glass properties including the viscosity‐temperature relationship, thermal expansion, liquidus temperature, forming behavior and color. Compared to the benchmark glass, representative of commercial SLS glasses, melting temperatures (taken as temperatures corresponding to log (viscosity/dPa·s) = 2) of reformulated glasses are reduced by 11°C‐55°C. Investigation of four industrial by‐products (seashell waste, eggshell waste, biomass ash, and rice husk ash), and their potential suitability as alternative glass batch raw materials, was also conducted. Seashell waste and biomass ash were successfully introduced into representative green glass formulations. |
doi_str_mv | 10.1111/ijag.14775 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2377196307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377196307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3765-9df2884574bb519e6c36b8fd11945a4fb64c550bc0d616ba1b0720d0cd44ef703</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRS0EElXphhNYYoeUYieOnSyrqpSiSmxgHY0dp3XlJMVOKJVYcATOyElwacWS2fwZ6f0ZzUfompIxDXVnNrAaUyZEeoYGMWE0onHOzv_6jF-ikfcbEirJMp5nA_Qxe9_a1kHXuj122mtwao1Ng8F22jXQmTeNHexwDWE2YLFve6e0x9CUwVC1ru5twNoGhz44y953J7CE788va2odxBtrFOCVBe-xhE6ttb9CFxVYr0cnHaKX-9nz9CFaPs0X08kyUongaZSXVZxlLBVMypTmmquEy6wqKc1ZCqySnKk0JVKRklMugUoiYlISVTKmK0GSIbo57t269rXXvis24YkmnCziRAia84SIQN0eKeVa78NrxdaZGty-oKQ4BFwcAi5-Aw4wPcI7Y_X-H7JYPE7mR88PobWCAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377196307</pqid></control><display><type>article</type><title>Exploratory research in alternative raw material sources and reformulation for industrial soda‐lime‐silica glass batches</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Deng, Wei ; Spathi, Charikleia ; Coulbeck, Teig ; Erhan, Kilinc ; Backhouse, Daniel ; Marshall, Martyn ; Ireson, Robert ; Bingham, Paul A.</creator><creatorcontrib>Deng, Wei ; Spathi, Charikleia ; Coulbeck, Teig ; Erhan, Kilinc ; Backhouse, Daniel ; Marshall, Martyn ; Ireson, Robert ; Bingham, Paul A.</creatorcontrib><description>For energy saving and CO2 emissions reduction, in addition to extending the range of suitable raw material sources for glass manufacture, compositional reformulation, and alternative raw materials have been studied in the context of industrial container and float‐type soda‐lime‐silica (SLS) glasses. Lithium, potassium, and boron were applied to modify benchmark glass compositions. Reformulation impacts on key glass properties including the viscosity‐temperature relationship, thermal expansion, liquidus temperature, forming behavior and color. Compared to the benchmark glass, representative of commercial SLS glasses, melting temperatures (taken as temperatures corresponding to log (viscosity/dPa·s) = 2) of reformulated glasses are reduced by 11°C‐55°C. Investigation of four industrial by‐products (seashell waste, eggshell waste, biomass ash, and rice husk ash), and their potential suitability as alternative glass batch raw materials, was also conducted. Seashell waste and biomass ash were successfully introduced into representative green glass formulations.</description><identifier>ISSN: 2041-1286</identifier><identifier>EISSN: 2041-1294</identifier><identifier>DOI: 10.1111/ijag.14775</identifier><language>eng</language><publisher>Westerville: Wiley Subscription Services, Inc</publisher><subject>alternative raw material ; Ashes ; Benchmarks ; Biomass ; Boron ; decarbonization ; Energy conservation ; glass ; Green glass ; Lime ; Liquidus ; Lithium ; Raw materials ; reformulation ; Silica glass ; Silicon dioxide ; Thermal expansion ; Viscosity</subject><ispartof>International journal of applied glass science, 2020-04, Vol.11 (2), p.340-356</ispartof><rights>2019 The American Ceramic Society and Wiley Periodicals, Inc</rights><rights>2020 American Ceramic Society and Wiley Periodicals, Inc</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3765-9df2884574bb519e6c36b8fd11945a4fb64c550bc0d616ba1b0720d0cd44ef703</citedby><cites>FETCH-LOGICAL-c3765-9df2884574bb519e6c36b8fd11945a4fb64c550bc0d616ba1b0720d0cd44ef703</cites><orcidid>0000-0001-6017-0798 ; 0000-0002-1793-8455</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fijag.14775$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fijag.14775$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Deng, Wei</creatorcontrib><creatorcontrib>Spathi, Charikleia</creatorcontrib><creatorcontrib>Coulbeck, Teig</creatorcontrib><creatorcontrib>Erhan, Kilinc</creatorcontrib><creatorcontrib>Backhouse, Daniel</creatorcontrib><creatorcontrib>Marshall, Martyn</creatorcontrib><creatorcontrib>Ireson, Robert</creatorcontrib><creatorcontrib>Bingham, Paul A.</creatorcontrib><title>Exploratory research in alternative raw material sources and reformulation for industrial soda‐lime‐silica glass batches</title><title>International journal of applied glass science</title><description>For energy saving and CO2 emissions reduction, in addition to extending the range of suitable raw material sources for glass manufacture, compositional reformulation, and alternative raw materials have been studied in the context of industrial container and float‐type soda‐lime‐silica (SLS) glasses. Lithium, potassium, and boron were applied to modify benchmark glass compositions. Reformulation impacts on key glass properties including the viscosity‐temperature relationship, thermal expansion, liquidus temperature, forming behavior and color. Compared to the benchmark glass, representative of commercial SLS glasses, melting temperatures (taken as temperatures corresponding to log (viscosity/dPa·s) = 2) of reformulated glasses are reduced by 11°C‐55°C. Investigation of four industrial by‐products (seashell waste, eggshell waste, biomass ash, and rice husk ash), and their potential suitability as alternative glass batch raw materials, was also conducted. Seashell waste and biomass ash were successfully introduced into representative green glass formulations.</description><subject>alternative raw material</subject><subject>Ashes</subject><subject>Benchmarks</subject><subject>Biomass</subject><subject>Boron</subject><subject>decarbonization</subject><subject>Energy conservation</subject><subject>glass</subject><subject>Green glass</subject><subject>Lime</subject><subject>Liquidus</subject><subject>Lithium</subject><subject>Raw materials</subject><subject>reformulation</subject><subject>Silica glass</subject><subject>Silicon dioxide</subject><subject>Thermal expansion</subject><subject>Viscosity</subject><issn>2041-1286</issn><issn>2041-1294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEFOwzAQRS0EElXphhNYYoeUYieOnSyrqpSiSmxgHY0dp3XlJMVOKJVYcATOyElwacWS2fwZ6f0ZzUfompIxDXVnNrAaUyZEeoYGMWE0onHOzv_6jF-ikfcbEirJMp5nA_Qxe9_a1kHXuj122mtwao1Ng8F22jXQmTeNHexwDWE2YLFve6e0x9CUwVC1ru5twNoGhz44y953J7CE788va2odxBtrFOCVBe-xhE6ttb9CFxVYr0cnHaKX-9nz9CFaPs0X08kyUongaZSXVZxlLBVMypTmmquEy6wqKc1ZCqySnKk0JVKRklMugUoiYlISVTKmK0GSIbo57t269rXXvis24YkmnCziRAia84SIQN0eKeVa78NrxdaZGty-oKQ4BFwcAi5-Aw4wPcI7Y_X-H7JYPE7mR88PobWCAg</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Deng, Wei</creator><creator>Spathi, Charikleia</creator><creator>Coulbeck, Teig</creator><creator>Erhan, Kilinc</creator><creator>Backhouse, Daniel</creator><creator>Marshall, Martyn</creator><creator>Ireson, Robert</creator><creator>Bingham, Paul A.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-6017-0798</orcidid><orcidid>https://orcid.org/0000-0002-1793-8455</orcidid></search><sort><creationdate>202004</creationdate><title>Exploratory research in alternative raw material sources and reformulation for industrial soda‐lime‐silica glass batches</title><author>Deng, Wei ; Spathi, Charikleia ; Coulbeck, Teig ; Erhan, Kilinc ; Backhouse, Daniel ; Marshall, Martyn ; Ireson, Robert ; Bingham, Paul A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3765-9df2884574bb519e6c36b8fd11945a4fb64c550bc0d616ba1b0720d0cd44ef703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>alternative raw material</topic><topic>Ashes</topic><topic>Benchmarks</topic><topic>Biomass</topic><topic>Boron</topic><topic>decarbonization</topic><topic>Energy conservation</topic><topic>glass</topic><topic>Green glass</topic><topic>Lime</topic><topic>Liquidus</topic><topic>Lithium</topic><topic>Raw materials</topic><topic>reformulation</topic><topic>Silica glass</topic><topic>Silicon dioxide</topic><topic>Thermal expansion</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Wei</creatorcontrib><creatorcontrib>Spathi, Charikleia</creatorcontrib><creatorcontrib>Coulbeck, Teig</creatorcontrib><creatorcontrib>Erhan, Kilinc</creatorcontrib><creatorcontrib>Backhouse, Daniel</creatorcontrib><creatorcontrib>Marshall, Martyn</creatorcontrib><creatorcontrib>Ireson, Robert</creatorcontrib><creatorcontrib>Bingham, Paul A.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of applied glass science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Wei</au><au>Spathi, Charikleia</au><au>Coulbeck, Teig</au><au>Erhan, Kilinc</au><au>Backhouse, Daniel</au><au>Marshall, Martyn</au><au>Ireson, Robert</au><au>Bingham, Paul A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploratory research in alternative raw material sources and reformulation for industrial soda‐lime‐silica glass batches</atitle><jtitle>International journal of applied glass science</jtitle><date>2020-04</date><risdate>2020</risdate><volume>11</volume><issue>2</issue><spage>340</spage><epage>356</epage><pages>340-356</pages><issn>2041-1286</issn><eissn>2041-1294</eissn><abstract>For energy saving and CO2 emissions reduction, in addition to extending the range of suitable raw material sources for glass manufacture, compositional reformulation, and alternative raw materials have been studied in the context of industrial container and float‐type soda‐lime‐silica (SLS) glasses. Lithium, potassium, and boron were applied to modify benchmark glass compositions. Reformulation impacts on key glass properties including the viscosity‐temperature relationship, thermal expansion, liquidus temperature, forming behavior and color. Compared to the benchmark glass, representative of commercial SLS glasses, melting temperatures (taken as temperatures corresponding to log (viscosity/dPa·s) = 2) of reformulated glasses are reduced by 11°C‐55°C. Investigation of four industrial by‐products (seashell waste, eggshell waste, biomass ash, and rice husk ash), and their potential suitability as alternative glass batch raw materials, was also conducted. Seashell waste and biomass ash were successfully introduced into representative green glass formulations.</abstract><cop>Westerville</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ijag.14775</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6017-0798</orcidid><orcidid>https://orcid.org/0000-0002-1793-8455</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1286 |
ispartof | International journal of applied glass science, 2020-04, Vol.11 (2), p.340-356 |
issn | 2041-1286 2041-1294 |
language | eng |
recordid | cdi_proquest_journals_2377196307 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | alternative raw material Ashes Benchmarks Biomass Boron decarbonization Energy conservation glass Green glass Lime Liquidus Lithium Raw materials reformulation Silica glass Silicon dioxide Thermal expansion Viscosity |
title | Exploratory research in alternative raw material sources and reformulation for industrial soda‐lime‐silica glass batches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A21%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploratory%20research%20in%20alternative%20raw%20material%20sources%20and%20reformulation%20for%20industrial%20soda%E2%80%90lime%E2%80%90silica%20glass%20batches&rft.jtitle=International%20journal%20of%20applied%20glass%20science&rft.au=Deng,%20Wei&rft.date=2020-04&rft.volume=11&rft.issue=2&rft.spage=340&rft.epage=356&rft.pages=340-356&rft.issn=2041-1286&rft.eissn=2041-1294&rft_id=info:doi/10.1111/ijag.14775&rft_dat=%3Cproquest_cross%3E2377196307%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377196307&rft_id=info:pmid/&rfr_iscdi=true |