Exploratory research in alternative raw material sources and reformulation for industrial soda‐lime‐silica glass batches

For energy saving and CO2 emissions reduction, in addition to extending the range of suitable raw material sources for glass manufacture, compositional reformulation, and alternative raw materials have been studied in the context of industrial container and float‐type soda‐lime‐silica (SLS) glasses....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of applied glass science 2020-04, Vol.11 (2), p.340-356
Hauptverfasser: Deng, Wei, Spathi, Charikleia, Coulbeck, Teig, Erhan, Kilinc, Backhouse, Daniel, Marshall, Martyn, Ireson, Robert, Bingham, Paul A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 356
container_issue 2
container_start_page 340
container_title International journal of applied glass science
container_volume 11
creator Deng, Wei
Spathi, Charikleia
Coulbeck, Teig
Erhan, Kilinc
Backhouse, Daniel
Marshall, Martyn
Ireson, Robert
Bingham, Paul A.
description For energy saving and CO2 emissions reduction, in addition to extending the range of suitable raw material sources for glass manufacture, compositional reformulation, and alternative raw materials have been studied in the context of industrial container and float‐type soda‐lime‐silica (SLS) glasses. Lithium, potassium, and boron were applied to modify benchmark glass compositions. Reformulation impacts on key glass properties including the viscosity‐temperature relationship, thermal expansion, liquidus temperature, forming behavior and color. Compared to the benchmark glass, representative of commercial SLS glasses, melting temperatures (taken as temperatures corresponding to log (viscosity/dPa·s) = 2) of reformulated glasses are reduced by 11°C‐55°C. Investigation of four industrial by‐products (seashell waste, eggshell waste, biomass ash, and rice husk ash), and their potential suitability as alternative glass batch raw materials, was also conducted. Seashell waste and biomass ash were successfully introduced into representative green glass formulations.
doi_str_mv 10.1111/ijag.14775
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2377196307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377196307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3765-9df2884574bb519e6c36b8fd11945a4fb64c550bc0d616ba1b0720d0cd44ef703</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRS0EElXphhNYYoeUYieOnSyrqpSiSmxgHY0dp3XlJMVOKJVYcATOyElwacWS2fwZ6f0ZzUfompIxDXVnNrAaUyZEeoYGMWE0onHOzv_6jF-ikfcbEirJMp5nA_Qxe9_a1kHXuj122mtwao1Ng8F22jXQmTeNHexwDWE2YLFve6e0x9CUwVC1ru5twNoGhz44y953J7CE788va2odxBtrFOCVBe-xhE6ttb9CFxVYr0cnHaKX-9nz9CFaPs0X08kyUongaZSXVZxlLBVMypTmmquEy6wqKc1ZCqySnKk0JVKRklMugUoiYlISVTKmK0GSIbo57t269rXXvis24YkmnCziRAia84SIQN0eKeVa78NrxdaZGty-oKQ4BFwcAi5-Aw4wPcI7Y_X-H7JYPE7mR88PobWCAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377196307</pqid></control><display><type>article</type><title>Exploratory research in alternative raw material sources and reformulation for industrial soda‐lime‐silica glass batches</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Deng, Wei ; Spathi, Charikleia ; Coulbeck, Teig ; Erhan, Kilinc ; Backhouse, Daniel ; Marshall, Martyn ; Ireson, Robert ; Bingham, Paul A.</creator><creatorcontrib>Deng, Wei ; Spathi, Charikleia ; Coulbeck, Teig ; Erhan, Kilinc ; Backhouse, Daniel ; Marshall, Martyn ; Ireson, Robert ; Bingham, Paul A.</creatorcontrib><description>For energy saving and CO2 emissions reduction, in addition to extending the range of suitable raw material sources for glass manufacture, compositional reformulation, and alternative raw materials have been studied in the context of industrial container and float‐type soda‐lime‐silica (SLS) glasses. Lithium, potassium, and boron were applied to modify benchmark glass compositions. Reformulation impacts on key glass properties including the viscosity‐temperature relationship, thermal expansion, liquidus temperature, forming behavior and color. Compared to the benchmark glass, representative of commercial SLS glasses, melting temperatures (taken as temperatures corresponding to log (viscosity/dPa·s) = 2) of reformulated glasses are reduced by 11°C‐55°C. Investigation of four industrial by‐products (seashell waste, eggshell waste, biomass ash, and rice husk ash), and their potential suitability as alternative glass batch raw materials, was also conducted. Seashell waste and biomass ash were successfully introduced into representative green glass formulations.</description><identifier>ISSN: 2041-1286</identifier><identifier>EISSN: 2041-1294</identifier><identifier>DOI: 10.1111/ijag.14775</identifier><language>eng</language><publisher>Westerville: Wiley Subscription Services, Inc</publisher><subject>alternative raw material ; Ashes ; Benchmarks ; Biomass ; Boron ; decarbonization ; Energy conservation ; glass ; Green glass ; Lime ; Liquidus ; Lithium ; Raw materials ; reformulation ; Silica glass ; Silicon dioxide ; Thermal expansion ; Viscosity</subject><ispartof>International journal of applied glass science, 2020-04, Vol.11 (2), p.340-356</ispartof><rights>2019 The American Ceramic Society and Wiley Periodicals, Inc</rights><rights>2020 American Ceramic Society and Wiley Periodicals, Inc</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3765-9df2884574bb519e6c36b8fd11945a4fb64c550bc0d616ba1b0720d0cd44ef703</citedby><cites>FETCH-LOGICAL-c3765-9df2884574bb519e6c36b8fd11945a4fb64c550bc0d616ba1b0720d0cd44ef703</cites><orcidid>0000-0001-6017-0798 ; 0000-0002-1793-8455</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fijag.14775$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fijag.14775$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Deng, Wei</creatorcontrib><creatorcontrib>Spathi, Charikleia</creatorcontrib><creatorcontrib>Coulbeck, Teig</creatorcontrib><creatorcontrib>Erhan, Kilinc</creatorcontrib><creatorcontrib>Backhouse, Daniel</creatorcontrib><creatorcontrib>Marshall, Martyn</creatorcontrib><creatorcontrib>Ireson, Robert</creatorcontrib><creatorcontrib>Bingham, Paul A.</creatorcontrib><title>Exploratory research in alternative raw material sources and reformulation for industrial soda‐lime‐silica glass batches</title><title>International journal of applied glass science</title><description>For energy saving and CO2 emissions reduction, in addition to extending the range of suitable raw material sources for glass manufacture, compositional reformulation, and alternative raw materials have been studied in the context of industrial container and float‐type soda‐lime‐silica (SLS) glasses. Lithium, potassium, and boron were applied to modify benchmark glass compositions. Reformulation impacts on key glass properties including the viscosity‐temperature relationship, thermal expansion, liquidus temperature, forming behavior and color. Compared to the benchmark glass, representative of commercial SLS glasses, melting temperatures (taken as temperatures corresponding to log (viscosity/dPa·s) = 2) of reformulated glasses are reduced by 11°C‐55°C. Investigation of four industrial by‐products (seashell waste, eggshell waste, biomass ash, and rice husk ash), and their potential suitability as alternative glass batch raw materials, was also conducted. Seashell waste and biomass ash were successfully introduced into representative green glass formulations.</description><subject>alternative raw material</subject><subject>Ashes</subject><subject>Benchmarks</subject><subject>Biomass</subject><subject>Boron</subject><subject>decarbonization</subject><subject>Energy conservation</subject><subject>glass</subject><subject>Green glass</subject><subject>Lime</subject><subject>Liquidus</subject><subject>Lithium</subject><subject>Raw materials</subject><subject>reformulation</subject><subject>Silica glass</subject><subject>Silicon dioxide</subject><subject>Thermal expansion</subject><subject>Viscosity</subject><issn>2041-1286</issn><issn>2041-1294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEFOwzAQRS0EElXphhNYYoeUYieOnSyrqpSiSmxgHY0dp3XlJMVOKJVYcATOyElwacWS2fwZ6f0ZzUfompIxDXVnNrAaUyZEeoYGMWE0onHOzv_6jF-ikfcbEirJMp5nA_Qxe9_a1kHXuj122mtwao1Ng8F22jXQmTeNHexwDWE2YLFve6e0x9CUwVC1ru5twNoGhz44y953J7CE788va2odxBtrFOCVBe-xhE6ttb9CFxVYr0cnHaKX-9nz9CFaPs0X08kyUongaZSXVZxlLBVMypTmmquEy6wqKc1ZCqySnKk0JVKRklMugUoiYlISVTKmK0GSIbo57t269rXXvis24YkmnCziRAia84SIQN0eKeVa78NrxdaZGty-oKQ4BFwcAi5-Aw4wPcI7Y_X-H7JYPE7mR88PobWCAg</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Deng, Wei</creator><creator>Spathi, Charikleia</creator><creator>Coulbeck, Teig</creator><creator>Erhan, Kilinc</creator><creator>Backhouse, Daniel</creator><creator>Marshall, Martyn</creator><creator>Ireson, Robert</creator><creator>Bingham, Paul A.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-6017-0798</orcidid><orcidid>https://orcid.org/0000-0002-1793-8455</orcidid></search><sort><creationdate>202004</creationdate><title>Exploratory research in alternative raw material sources and reformulation for industrial soda‐lime‐silica glass batches</title><author>Deng, Wei ; Spathi, Charikleia ; Coulbeck, Teig ; Erhan, Kilinc ; Backhouse, Daniel ; Marshall, Martyn ; Ireson, Robert ; Bingham, Paul A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3765-9df2884574bb519e6c36b8fd11945a4fb64c550bc0d616ba1b0720d0cd44ef703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>alternative raw material</topic><topic>Ashes</topic><topic>Benchmarks</topic><topic>Biomass</topic><topic>Boron</topic><topic>decarbonization</topic><topic>Energy conservation</topic><topic>glass</topic><topic>Green glass</topic><topic>Lime</topic><topic>Liquidus</topic><topic>Lithium</topic><topic>Raw materials</topic><topic>reformulation</topic><topic>Silica glass</topic><topic>Silicon dioxide</topic><topic>Thermal expansion</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Wei</creatorcontrib><creatorcontrib>Spathi, Charikleia</creatorcontrib><creatorcontrib>Coulbeck, Teig</creatorcontrib><creatorcontrib>Erhan, Kilinc</creatorcontrib><creatorcontrib>Backhouse, Daniel</creatorcontrib><creatorcontrib>Marshall, Martyn</creatorcontrib><creatorcontrib>Ireson, Robert</creatorcontrib><creatorcontrib>Bingham, Paul A.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of applied glass science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Wei</au><au>Spathi, Charikleia</au><au>Coulbeck, Teig</au><au>Erhan, Kilinc</au><au>Backhouse, Daniel</au><au>Marshall, Martyn</au><au>Ireson, Robert</au><au>Bingham, Paul A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploratory research in alternative raw material sources and reformulation for industrial soda‐lime‐silica glass batches</atitle><jtitle>International journal of applied glass science</jtitle><date>2020-04</date><risdate>2020</risdate><volume>11</volume><issue>2</issue><spage>340</spage><epage>356</epage><pages>340-356</pages><issn>2041-1286</issn><eissn>2041-1294</eissn><abstract>For energy saving and CO2 emissions reduction, in addition to extending the range of suitable raw material sources for glass manufacture, compositional reformulation, and alternative raw materials have been studied in the context of industrial container and float‐type soda‐lime‐silica (SLS) glasses. Lithium, potassium, and boron were applied to modify benchmark glass compositions. Reformulation impacts on key glass properties including the viscosity‐temperature relationship, thermal expansion, liquidus temperature, forming behavior and color. Compared to the benchmark glass, representative of commercial SLS glasses, melting temperatures (taken as temperatures corresponding to log (viscosity/dPa·s) = 2) of reformulated glasses are reduced by 11°C‐55°C. Investigation of four industrial by‐products (seashell waste, eggshell waste, biomass ash, and rice husk ash), and their potential suitability as alternative glass batch raw materials, was also conducted. Seashell waste and biomass ash were successfully introduced into representative green glass formulations.</abstract><cop>Westerville</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ijag.14775</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6017-0798</orcidid><orcidid>https://orcid.org/0000-0002-1793-8455</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1286
ispartof International journal of applied glass science, 2020-04, Vol.11 (2), p.340-356
issn 2041-1286
2041-1294
language eng
recordid cdi_proquest_journals_2377196307
source Wiley Online Library Journals Frontfile Complete
subjects alternative raw material
Ashes
Benchmarks
Biomass
Boron
decarbonization
Energy conservation
glass
Green glass
Lime
Liquidus
Lithium
Raw materials
reformulation
Silica glass
Silicon dioxide
Thermal expansion
Viscosity
title Exploratory research in alternative raw material sources and reformulation for industrial soda‐lime‐silica glass batches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A21%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploratory%20research%20in%20alternative%20raw%20material%20sources%20and%20reformulation%20for%20industrial%20soda%E2%80%90lime%E2%80%90silica%20glass%20batches&rft.jtitle=International%20journal%20of%20applied%20glass%20science&rft.au=Deng,%20Wei&rft.date=2020-04&rft.volume=11&rft.issue=2&rft.spage=340&rft.epage=356&rft.pages=340-356&rft.issn=2041-1286&rft.eissn=2041-1294&rft_id=info:doi/10.1111/ijag.14775&rft_dat=%3Cproquest_cross%3E2377196307%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377196307&rft_id=info:pmid/&rfr_iscdi=true