Vibration of fluid-conveying nanotubes subjected to magnetic field based on the thin-walled Timoshenko beam theory
•Flutter instability of nanotubes conveying magnetic nanoflow is studied.•Nonlocal strain gradient thin-walled Timoshenko beam model are considered.•The effects of Knudsen number and magnetic nanoflow on the critical flutter velocity of nanotube are studied. In this article, the flutter vibrations o...
Gespeichert in:
Veröffentlicht in: | Applied Mathematical Modelling 2020-04, Vol.80, p.65-83 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 83 |
---|---|
container_issue | |
container_start_page | 65 |
container_title | Applied Mathematical Modelling |
container_volume | 80 |
creator | Ghane, Mahta Saidi, Ali Reza Bahaadini, Reza |
description | •Flutter instability of nanotubes conveying magnetic nanoflow is studied.•Nonlocal strain gradient thin-walled Timoshenko beam model are considered.•The effects of Knudsen number and magnetic nanoflow on the critical flutter velocity of nanotube are studied.
In this article, the flutter vibrations of fluid-conveying thin-walled nanotubes subjected to magnetic field is investigated. For modeling fluid structure interaction, the nonlocal strain gradient thin-walled Timoshenko beam model, Knudsen number and magnetic nanoflow are assumed. The Knudsen number is considered to analyze the slip boundary conditions between the fluid-flow and the nanotube's wall, and the average velocity correction parameter is utilized to earn the modified flow velocity of nano-flow. Based on the extended Hamilton's principle, the size-dependent governing equations and associated boundary conditions are derived. The coupled equations of motion are transformed to a general eigenvalue problem by applying extended Galerkin technique under the cantilever end conditions. The influences of nonlocal parameter, strain gradient length scale, magnetic nanoflow, longitudinal magnetic field, Knudsen number on the eigenvalues and critical flutter velocity of the nanotubes are studied. |
doi_str_mv | 10.1016/j.apm.2019.11.034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2376945126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X19307164</els_id><sourcerecordid>2376945126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-f597d4492125dcf2870b46f764634e15a01f0feda650f19cf825009364faa9473</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhiMEEqXwA9gsMSecEychYkIVX1IlloLYLMc5F4fELrZT1H-PqzIwMZzu8707PUlySSGjQKvrPhObMcuBNhmlGRTsKJlBAXXaAHs__hOfJmfe9wBQxmyWuDfdOhG0NcQqooZJd6m0Zos7bdbECGPD1KInfmp7lAE7EiwZxdpg0JIojUNHWuFjPW4IHxhNm_RbDEMsrfRo_QeaT0taFOO-b93uPDlRYvB48evnyevD_WrxlC5fHp8Xd8tUFnkZUlU2dcdYk9O87KTKb2poWaXqilUFQ1oKoAoUdqIqQdFGqpu8BGiKiikhGlYX8-TqsHfj7NeEPvDeTs7Ekzwv6qphJc2rOEUPU9JZ7x0qvnF6FG7HKfA9Wt7ziJbv0XJKeUQbNbcHDcb3txod91KjkdhpFyHxzup_1D-m2oJh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376945126</pqid></control><display><type>article</type><title>Vibration of fluid-conveying nanotubes subjected to magnetic field based on the thin-walled Timoshenko beam theory</title><source>Elsevier ScienceDirect Journals</source><source>EBSCOhost Business Source Complete</source><source>Education Source</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ghane, Mahta ; Saidi, Ali Reza ; Bahaadini, Reza</creator><creatorcontrib>Ghane, Mahta ; Saidi, Ali Reza ; Bahaadini, Reza</creatorcontrib><description>•Flutter instability of nanotubes conveying magnetic nanoflow is studied.•Nonlocal strain gradient thin-walled Timoshenko beam model are considered.•The effects of Knudsen number and magnetic nanoflow on the critical flutter velocity of nanotube are studied.
In this article, the flutter vibrations of fluid-conveying thin-walled nanotubes subjected to magnetic field is investigated. For modeling fluid structure interaction, the nonlocal strain gradient thin-walled Timoshenko beam model, Knudsen number and magnetic nanoflow are assumed. The Knudsen number is considered to analyze the slip boundary conditions between the fluid-flow and the nanotube's wall, and the average velocity correction parameter is utilized to earn the modified flow velocity of nano-flow. Based on the extended Hamilton's principle, the size-dependent governing equations and associated boundary conditions are derived. The coupled equations of motion are transformed to a general eigenvalue problem by applying extended Galerkin technique under the cantilever end conditions. The influences of nonlocal parameter, strain gradient length scale, magnetic nanoflow, longitudinal magnetic field, Knudsen number on the eigenvalues and critical flutter velocity of the nanotubes are studied.</description><identifier>ISSN: 0307-904X</identifier><identifier>ISSN: 1088-8691</identifier><identifier>EISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2019.11.034</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Beam theory (structures) ; Boundary conditions ; Computational fluid dynamics ; Conveying ; Eigenvalues ; Equations of motion ; Flow velocity ; Fluid flow ; Flutter ; Galerkin method ; Hamilton's principle ; Magnetic fields ; Magnetic nanoflow ; Mathematical models ; Nanotubes ; Nonlocal strain gradient theory ; Parameter modification ; Thin-walled beam ; Timoshenko beams ; Vibration</subject><ispartof>Applied Mathematical Modelling, 2020-04, Vol.80, p.65-83</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright Elsevier BV Apr 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-f597d4492125dcf2870b46f764634e15a01f0feda650f19cf825009364faa9473</citedby><cites>FETCH-LOGICAL-c325t-f597d4492125dcf2870b46f764634e15a01f0feda650f19cf825009364faa9473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apm.2019.11.034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Ghane, Mahta</creatorcontrib><creatorcontrib>Saidi, Ali Reza</creatorcontrib><creatorcontrib>Bahaadini, Reza</creatorcontrib><title>Vibration of fluid-conveying nanotubes subjected to magnetic field based on the thin-walled Timoshenko beam theory</title><title>Applied Mathematical Modelling</title><description>•Flutter instability of nanotubes conveying magnetic nanoflow is studied.•Nonlocal strain gradient thin-walled Timoshenko beam model are considered.•The effects of Knudsen number and magnetic nanoflow on the critical flutter velocity of nanotube are studied.
In this article, the flutter vibrations of fluid-conveying thin-walled nanotubes subjected to magnetic field is investigated. For modeling fluid structure interaction, the nonlocal strain gradient thin-walled Timoshenko beam model, Knudsen number and magnetic nanoflow are assumed. The Knudsen number is considered to analyze the slip boundary conditions between the fluid-flow and the nanotube's wall, and the average velocity correction parameter is utilized to earn the modified flow velocity of nano-flow. Based on the extended Hamilton's principle, the size-dependent governing equations and associated boundary conditions are derived. The coupled equations of motion are transformed to a general eigenvalue problem by applying extended Galerkin technique under the cantilever end conditions. The influences of nonlocal parameter, strain gradient length scale, magnetic nanoflow, longitudinal magnetic field, Knudsen number on the eigenvalues and critical flutter velocity of the nanotubes are studied.</description><subject>Beam theory (structures)</subject><subject>Boundary conditions</subject><subject>Computational fluid dynamics</subject><subject>Conveying</subject><subject>Eigenvalues</subject><subject>Equations of motion</subject><subject>Flow velocity</subject><subject>Fluid flow</subject><subject>Flutter</subject><subject>Galerkin method</subject><subject>Hamilton's principle</subject><subject>Magnetic fields</subject><subject>Magnetic nanoflow</subject><subject>Mathematical models</subject><subject>Nanotubes</subject><subject>Nonlocal strain gradient theory</subject><subject>Parameter modification</subject><subject>Thin-walled beam</subject><subject>Timoshenko beams</subject><subject>Vibration</subject><issn>0307-904X</issn><issn>1088-8691</issn><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhiMEEqXwA9gsMSecEychYkIVX1IlloLYLMc5F4fELrZT1H-PqzIwMZzu8707PUlySSGjQKvrPhObMcuBNhmlGRTsKJlBAXXaAHs__hOfJmfe9wBQxmyWuDfdOhG0NcQqooZJd6m0Zos7bdbECGPD1KInfmp7lAE7EiwZxdpg0JIojUNHWuFjPW4IHxhNm_RbDEMsrfRo_QeaT0taFOO-b93uPDlRYvB48evnyevD_WrxlC5fHp8Xd8tUFnkZUlU2dcdYk9O87KTKb2poWaXqilUFQ1oKoAoUdqIqQdFGqpu8BGiKiikhGlYX8-TqsHfj7NeEPvDeTs7Ekzwv6qphJc2rOEUPU9JZ7x0qvnF6FG7HKfA9Wt7ziJbv0XJKeUQbNbcHDcb3txod91KjkdhpFyHxzup_1D-m2oJh</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Ghane, Mahta</creator><creator>Saidi, Ali Reza</creator><creator>Bahaadini, Reza</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202004</creationdate><title>Vibration of fluid-conveying nanotubes subjected to magnetic field based on the thin-walled Timoshenko beam theory</title><author>Ghane, Mahta ; Saidi, Ali Reza ; Bahaadini, Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-f597d4492125dcf2870b46f764634e15a01f0feda650f19cf825009364faa9473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Beam theory (structures)</topic><topic>Boundary conditions</topic><topic>Computational fluid dynamics</topic><topic>Conveying</topic><topic>Eigenvalues</topic><topic>Equations of motion</topic><topic>Flow velocity</topic><topic>Fluid flow</topic><topic>Flutter</topic><topic>Galerkin method</topic><topic>Hamilton's principle</topic><topic>Magnetic fields</topic><topic>Magnetic nanoflow</topic><topic>Mathematical models</topic><topic>Nanotubes</topic><topic>Nonlocal strain gradient theory</topic><topic>Parameter modification</topic><topic>Thin-walled beam</topic><topic>Timoshenko beams</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghane, Mahta</creatorcontrib><creatorcontrib>Saidi, Ali Reza</creatorcontrib><creatorcontrib>Bahaadini, Reza</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied Mathematical Modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghane, Mahta</au><au>Saidi, Ali Reza</au><au>Bahaadini, Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vibration of fluid-conveying nanotubes subjected to magnetic field based on the thin-walled Timoshenko beam theory</atitle><jtitle>Applied Mathematical Modelling</jtitle><date>2020-04</date><risdate>2020</risdate><volume>80</volume><spage>65</spage><epage>83</epage><pages>65-83</pages><issn>0307-904X</issn><issn>1088-8691</issn><eissn>0307-904X</eissn><abstract>•Flutter instability of nanotubes conveying magnetic nanoflow is studied.•Nonlocal strain gradient thin-walled Timoshenko beam model are considered.•The effects of Knudsen number and magnetic nanoflow on the critical flutter velocity of nanotube are studied.
In this article, the flutter vibrations of fluid-conveying thin-walled nanotubes subjected to magnetic field is investigated. For modeling fluid structure interaction, the nonlocal strain gradient thin-walled Timoshenko beam model, Knudsen number and magnetic nanoflow are assumed. The Knudsen number is considered to analyze the slip boundary conditions between the fluid-flow and the nanotube's wall, and the average velocity correction parameter is utilized to earn the modified flow velocity of nano-flow. Based on the extended Hamilton's principle, the size-dependent governing equations and associated boundary conditions are derived. The coupled equations of motion are transformed to a general eigenvalue problem by applying extended Galerkin technique under the cantilever end conditions. The influences of nonlocal parameter, strain gradient length scale, magnetic nanoflow, longitudinal magnetic field, Knudsen number on the eigenvalues and critical flutter velocity of the nanotubes are studied.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2019.11.034</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0307-904X |
ispartof | Applied Mathematical Modelling, 2020-04, Vol.80, p.65-83 |
issn | 0307-904X 1088-8691 0307-904X |
language | eng |
recordid | cdi_proquest_journals_2376945126 |
source | Elsevier ScienceDirect Journals; EBSCOhost Business Source Complete; Education Source; EZB-FREE-00999 freely available EZB journals |
subjects | Beam theory (structures) Boundary conditions Computational fluid dynamics Conveying Eigenvalues Equations of motion Flow velocity Fluid flow Flutter Galerkin method Hamilton's principle Magnetic fields Magnetic nanoflow Mathematical models Nanotubes Nonlocal strain gradient theory Parameter modification Thin-walled beam Timoshenko beams Vibration |
title | Vibration of fluid-conveying nanotubes subjected to magnetic field based on the thin-walled Timoshenko beam theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A07%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vibration%20of%20fluid-conveying%20nanotubes%20subjected%20to%20magnetic%20field%20based%20on%20the%20thin-walled%20Timoshenko%20beam%20theory&rft.jtitle=Applied%20Mathematical%20Modelling&rft.au=Ghane,%20Mahta&rft.date=2020-04&rft.volume=80&rft.spage=65&rft.epage=83&rft.pages=65-83&rft.issn=0307-904X&rft.eissn=0307-904X&rft_id=info:doi/10.1016/j.apm.2019.11.034&rft_dat=%3Cproquest_cross%3E2376945126%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376945126&rft_id=info:pmid/&rft_els_id=S0307904X19307164&rfr_iscdi=true |