Vibration of fluid-conveying nanotubes subjected to magnetic field based on the thin-walled Timoshenko beam theory

•Flutter instability of nanotubes conveying magnetic nanoflow is studied.•Nonlocal strain gradient thin-walled Timoshenko beam model are considered.•The effects of Knudsen number and magnetic nanoflow on the critical flutter velocity of nanotube are studied. In this article, the flutter vibrations o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mathematical Modelling 2020-04, Vol.80, p.65-83
Hauptverfasser: Ghane, Mahta, Saidi, Ali Reza, Bahaadini, Reza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 83
container_issue
container_start_page 65
container_title Applied Mathematical Modelling
container_volume 80
creator Ghane, Mahta
Saidi, Ali Reza
Bahaadini, Reza
description •Flutter instability of nanotubes conveying magnetic nanoflow is studied.•Nonlocal strain gradient thin-walled Timoshenko beam model are considered.•The effects of Knudsen number and magnetic nanoflow on the critical flutter velocity of nanotube are studied. In this article, the flutter vibrations of fluid-conveying thin-walled nanotubes subjected to magnetic field is investigated. For modeling fluid structure interaction, the nonlocal strain gradient thin-walled Timoshenko beam model, Knudsen number and magnetic nanoflow are assumed. The Knudsen number is considered to analyze the slip boundary conditions between the fluid-flow and the nanotube's wall, and the average velocity correction parameter is utilized to earn the modified flow velocity of nano-flow. Based on the extended Hamilton's principle, the size-dependent governing equations and associated boundary conditions are derived. The coupled equations of motion are transformed to a general eigenvalue problem by applying extended Galerkin technique under the cantilever end conditions. The influences of nonlocal parameter, strain gradient length scale, magnetic nanoflow, longitudinal magnetic field, Knudsen number on the eigenvalues and critical flutter velocity of the nanotubes are studied.
doi_str_mv 10.1016/j.apm.2019.11.034
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2376945126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X19307164</els_id><sourcerecordid>2376945126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-f597d4492125dcf2870b46f764634e15a01f0feda650f19cf825009364faa9473</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhiMEEqXwA9gsMSecEychYkIVX1IlloLYLMc5F4fELrZT1H-PqzIwMZzu8707PUlySSGjQKvrPhObMcuBNhmlGRTsKJlBAXXaAHs__hOfJmfe9wBQxmyWuDfdOhG0NcQqooZJd6m0Zos7bdbECGPD1KInfmp7lAE7EiwZxdpg0JIojUNHWuFjPW4IHxhNm_RbDEMsrfRo_QeaT0taFOO-b93uPDlRYvB48evnyevD_WrxlC5fHp8Xd8tUFnkZUlU2dcdYk9O87KTKb2poWaXqilUFQ1oKoAoUdqIqQdFGqpu8BGiKiikhGlYX8-TqsHfj7NeEPvDeTs7Ekzwv6qphJc2rOEUPU9JZ7x0qvnF6FG7HKfA9Wt7ziJbv0XJKeUQbNbcHDcb3txod91KjkdhpFyHxzup_1D-m2oJh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376945126</pqid></control><display><type>article</type><title>Vibration of fluid-conveying nanotubes subjected to magnetic field based on the thin-walled Timoshenko beam theory</title><source>Elsevier ScienceDirect Journals</source><source>EBSCOhost Business Source Complete</source><source>Education Source</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ghane, Mahta ; Saidi, Ali Reza ; Bahaadini, Reza</creator><creatorcontrib>Ghane, Mahta ; Saidi, Ali Reza ; Bahaadini, Reza</creatorcontrib><description>•Flutter instability of nanotubes conveying magnetic nanoflow is studied.•Nonlocal strain gradient thin-walled Timoshenko beam model are considered.•The effects of Knudsen number and magnetic nanoflow on the critical flutter velocity of nanotube are studied. In this article, the flutter vibrations of fluid-conveying thin-walled nanotubes subjected to magnetic field is investigated. For modeling fluid structure interaction, the nonlocal strain gradient thin-walled Timoshenko beam model, Knudsen number and magnetic nanoflow are assumed. The Knudsen number is considered to analyze the slip boundary conditions between the fluid-flow and the nanotube's wall, and the average velocity correction parameter is utilized to earn the modified flow velocity of nano-flow. Based on the extended Hamilton's principle, the size-dependent governing equations and associated boundary conditions are derived. The coupled equations of motion are transformed to a general eigenvalue problem by applying extended Galerkin technique under the cantilever end conditions. The influences of nonlocal parameter, strain gradient length scale, magnetic nanoflow, longitudinal magnetic field, Knudsen number on the eigenvalues and critical flutter velocity of the nanotubes are studied.</description><identifier>ISSN: 0307-904X</identifier><identifier>ISSN: 1088-8691</identifier><identifier>EISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2019.11.034</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Beam theory (structures) ; Boundary conditions ; Computational fluid dynamics ; Conveying ; Eigenvalues ; Equations of motion ; Flow velocity ; Fluid flow ; Flutter ; Galerkin method ; Hamilton's principle ; Magnetic fields ; Magnetic nanoflow ; Mathematical models ; Nanotubes ; Nonlocal strain gradient theory ; Parameter modification ; Thin-walled beam ; Timoshenko beams ; Vibration</subject><ispartof>Applied Mathematical Modelling, 2020-04, Vol.80, p.65-83</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright Elsevier BV Apr 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-f597d4492125dcf2870b46f764634e15a01f0feda650f19cf825009364faa9473</citedby><cites>FETCH-LOGICAL-c325t-f597d4492125dcf2870b46f764634e15a01f0feda650f19cf825009364faa9473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apm.2019.11.034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Ghane, Mahta</creatorcontrib><creatorcontrib>Saidi, Ali Reza</creatorcontrib><creatorcontrib>Bahaadini, Reza</creatorcontrib><title>Vibration of fluid-conveying nanotubes subjected to magnetic field based on the thin-walled Timoshenko beam theory</title><title>Applied Mathematical Modelling</title><description>•Flutter instability of nanotubes conveying magnetic nanoflow is studied.•Nonlocal strain gradient thin-walled Timoshenko beam model are considered.•The effects of Knudsen number and magnetic nanoflow on the critical flutter velocity of nanotube are studied. In this article, the flutter vibrations of fluid-conveying thin-walled nanotubes subjected to magnetic field is investigated. For modeling fluid structure interaction, the nonlocal strain gradient thin-walled Timoshenko beam model, Knudsen number and magnetic nanoflow are assumed. The Knudsen number is considered to analyze the slip boundary conditions between the fluid-flow and the nanotube's wall, and the average velocity correction parameter is utilized to earn the modified flow velocity of nano-flow. Based on the extended Hamilton's principle, the size-dependent governing equations and associated boundary conditions are derived. The coupled equations of motion are transformed to a general eigenvalue problem by applying extended Galerkin technique under the cantilever end conditions. The influences of nonlocal parameter, strain gradient length scale, magnetic nanoflow, longitudinal magnetic field, Knudsen number on the eigenvalues and critical flutter velocity of the nanotubes are studied.</description><subject>Beam theory (structures)</subject><subject>Boundary conditions</subject><subject>Computational fluid dynamics</subject><subject>Conveying</subject><subject>Eigenvalues</subject><subject>Equations of motion</subject><subject>Flow velocity</subject><subject>Fluid flow</subject><subject>Flutter</subject><subject>Galerkin method</subject><subject>Hamilton's principle</subject><subject>Magnetic fields</subject><subject>Magnetic nanoflow</subject><subject>Mathematical models</subject><subject>Nanotubes</subject><subject>Nonlocal strain gradient theory</subject><subject>Parameter modification</subject><subject>Thin-walled beam</subject><subject>Timoshenko beams</subject><subject>Vibration</subject><issn>0307-904X</issn><issn>1088-8691</issn><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhiMEEqXwA9gsMSecEychYkIVX1IlloLYLMc5F4fELrZT1H-PqzIwMZzu8707PUlySSGjQKvrPhObMcuBNhmlGRTsKJlBAXXaAHs__hOfJmfe9wBQxmyWuDfdOhG0NcQqooZJd6m0Zos7bdbECGPD1KInfmp7lAE7EiwZxdpg0JIojUNHWuFjPW4IHxhNm_RbDEMsrfRo_QeaT0taFOO-b93uPDlRYvB48evnyevD_WrxlC5fHp8Xd8tUFnkZUlU2dcdYk9O87KTKb2poWaXqilUFQ1oKoAoUdqIqQdFGqpu8BGiKiikhGlYX8-TqsHfj7NeEPvDeTs7Ekzwv6qphJc2rOEUPU9JZ7x0qvnF6FG7HKfA9Wt7ziJbv0XJKeUQbNbcHDcb3txod91KjkdhpFyHxzup_1D-m2oJh</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Ghane, Mahta</creator><creator>Saidi, Ali Reza</creator><creator>Bahaadini, Reza</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202004</creationdate><title>Vibration of fluid-conveying nanotubes subjected to magnetic field based on the thin-walled Timoshenko beam theory</title><author>Ghane, Mahta ; Saidi, Ali Reza ; Bahaadini, Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-f597d4492125dcf2870b46f764634e15a01f0feda650f19cf825009364faa9473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Beam theory (structures)</topic><topic>Boundary conditions</topic><topic>Computational fluid dynamics</topic><topic>Conveying</topic><topic>Eigenvalues</topic><topic>Equations of motion</topic><topic>Flow velocity</topic><topic>Fluid flow</topic><topic>Flutter</topic><topic>Galerkin method</topic><topic>Hamilton's principle</topic><topic>Magnetic fields</topic><topic>Magnetic nanoflow</topic><topic>Mathematical models</topic><topic>Nanotubes</topic><topic>Nonlocal strain gradient theory</topic><topic>Parameter modification</topic><topic>Thin-walled beam</topic><topic>Timoshenko beams</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghane, Mahta</creatorcontrib><creatorcontrib>Saidi, Ali Reza</creatorcontrib><creatorcontrib>Bahaadini, Reza</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied Mathematical Modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghane, Mahta</au><au>Saidi, Ali Reza</au><au>Bahaadini, Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vibration of fluid-conveying nanotubes subjected to magnetic field based on the thin-walled Timoshenko beam theory</atitle><jtitle>Applied Mathematical Modelling</jtitle><date>2020-04</date><risdate>2020</risdate><volume>80</volume><spage>65</spage><epage>83</epage><pages>65-83</pages><issn>0307-904X</issn><issn>1088-8691</issn><eissn>0307-904X</eissn><abstract>•Flutter instability of nanotubes conveying magnetic nanoflow is studied.•Nonlocal strain gradient thin-walled Timoshenko beam model are considered.•The effects of Knudsen number and magnetic nanoflow on the critical flutter velocity of nanotube are studied. In this article, the flutter vibrations of fluid-conveying thin-walled nanotubes subjected to magnetic field is investigated. For modeling fluid structure interaction, the nonlocal strain gradient thin-walled Timoshenko beam model, Knudsen number and magnetic nanoflow are assumed. The Knudsen number is considered to analyze the slip boundary conditions between the fluid-flow and the nanotube's wall, and the average velocity correction parameter is utilized to earn the modified flow velocity of nano-flow. Based on the extended Hamilton's principle, the size-dependent governing equations and associated boundary conditions are derived. The coupled equations of motion are transformed to a general eigenvalue problem by applying extended Galerkin technique under the cantilever end conditions. The influences of nonlocal parameter, strain gradient length scale, magnetic nanoflow, longitudinal magnetic field, Knudsen number on the eigenvalues and critical flutter velocity of the nanotubes are studied.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2019.11.034</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0307-904X
ispartof Applied Mathematical Modelling, 2020-04, Vol.80, p.65-83
issn 0307-904X
1088-8691
0307-904X
language eng
recordid cdi_proquest_journals_2376945126
source Elsevier ScienceDirect Journals; EBSCOhost Business Source Complete; Education Source; EZB-FREE-00999 freely available EZB journals
subjects Beam theory (structures)
Boundary conditions
Computational fluid dynamics
Conveying
Eigenvalues
Equations of motion
Flow velocity
Fluid flow
Flutter
Galerkin method
Hamilton's principle
Magnetic fields
Magnetic nanoflow
Mathematical models
Nanotubes
Nonlocal strain gradient theory
Parameter modification
Thin-walled beam
Timoshenko beams
Vibration
title Vibration of fluid-conveying nanotubes subjected to magnetic field based on the thin-walled Timoshenko beam theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A07%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vibration%20of%20fluid-conveying%20nanotubes%20subjected%20to%20magnetic%20field%20based%20on%20the%20thin-walled%20Timoshenko%20beam%20theory&rft.jtitle=Applied%20Mathematical%20Modelling&rft.au=Ghane,%20Mahta&rft.date=2020-04&rft.volume=80&rft.spage=65&rft.epage=83&rft.pages=65-83&rft.issn=0307-904X&rft.eissn=0307-904X&rft_id=info:doi/10.1016/j.apm.2019.11.034&rft_dat=%3Cproquest_cross%3E2376945126%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376945126&rft_id=info:pmid/&rft_els_id=S0307904X19307164&rfr_iscdi=true