Nano-MOS2 modified PBO fiber hybrid for improving the tribological behavior and thermal stability of TPI/PEEK blends
A novel antiwear filler Nano-MOS2 capped PBO fiber was synthesized via an economical one-pot hydrothermal method and further be used to reinforce the tribological behavior of TPI/PEEK matrix at high temperature. Experimental results revealed that the as-prepared PBO-MOS2 fiber had stronger interfaci...
Gespeichert in:
Veröffentlicht in: | Tribology international 2020-04, Vol.144, p.106117, Article 106117 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 106117 |
container_title | Tribology international |
container_volume | 144 |
creator | Yan, Yunfeng Meng, Zhaojie Liu, Hao Wang, Jianzhang Chen, Beibei Yan, Fengyuan |
description | A novel antiwear filler Nano-MOS2 capped PBO fiber was synthesized via an economical one-pot hydrothermal method and further be used to reinforce the tribological behavior of TPI/PEEK matrix at high temperature. Experimental results revealed that the as-prepared PBO-MOS2 fiber had stronger interfacial adhesion with the blended matrix(30%TPI/PEEK), when compared to the untreated PBO fiber. Therefore, this enhancement could be beneficial to stress transfer from the matrix to fiber during friction process. In addition, further experiment indicated that the mechanical property, thermal stability and lubrication performance of the as-prepared composite also has been improved. Especially, the PBO-MOS2 reinforced TPI/PEEK composite showed excellent wear resistance and friction-reducing capacity at high temperature. The COF and wear rate reduced 22.9% and 61.1%, respectively, at 200 °C.
•A novel antiwear filler Nano-MOS2 capped PBO fiber was synthesized via an economical one-pot hydrothermal method.•PBO-MOS2 was used to reinforce the tribological property and thermal stability of TPI/PEEK matrix.•This enhancement is beneficial to stress transition from the matrix to fiber during friction and wear process. |
doi_str_mv | 10.1016/j.triboint.2019.106117 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2376944208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301679X19306310</els_id><sourcerecordid>2376944208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-53d3207b5931a9b78d883dc4ac8feea31e2427242d1146e586baaad643d127c13</originalsourceid><addsrcrecordid>eNqFUEtPGzEQtlCRmgJ_obLEeYNfsXdvtCgUxCORoFJvll9LJtqsqW0i5d_XIXDuYTTSzPeY-RD6TsmUEiov1tOSwEYYy5QR2tWhpFQdoQltVdcwIcUXNCGc0Eaq7s9X9C3nNSFEiU5NUHk0Y2weFk8Mb6KHHoLHy58L3IMNCa92NoHHfUwYNq8pbmF8wWUV8LvjEF_AmQHbsDJbqBgz-v02beowF2NhgLLDscfPy9uL5Xx-h-0QRp9P0XFvhhzOPvoJ-n09f766ae4Xv26vftw3jgtSmhn3nBFlZx2nprOq9W3LvRPGtX0IhtPABFO1PKVChlkrrTHGS8E9ZcpRfoLOD7r19L9vIRe9jm9prJaacSU7IRhpK0oeUC7FnFPo9WuCjUk7TYneJ6zX-jNhvU9YHxKuxMsDMdQfthCSzg7C6IKHFFzRPsL_JP4B0AmH3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376944208</pqid></control><display><type>article</type><title>Nano-MOS2 modified PBO fiber hybrid for improving the tribological behavior and thermal stability of TPI/PEEK blends</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Yan, Yunfeng ; Meng, Zhaojie ; Liu, Hao ; Wang, Jianzhang ; Chen, Beibei ; Yan, Fengyuan</creator><creatorcontrib>Yan, Yunfeng ; Meng, Zhaojie ; Liu, Hao ; Wang, Jianzhang ; Chen, Beibei ; Yan, Fengyuan</creatorcontrib><description>A novel antiwear filler Nano-MOS2 capped PBO fiber was synthesized via an economical one-pot hydrothermal method and further be used to reinforce the tribological behavior of TPI/PEEK matrix at high temperature. Experimental results revealed that the as-prepared PBO-MOS2 fiber had stronger interfacial adhesion with the blended matrix(30%TPI/PEEK), when compared to the untreated PBO fiber. Therefore, this enhancement could be beneficial to stress transfer from the matrix to fiber during friction process. In addition, further experiment indicated that the mechanical property, thermal stability and lubrication performance of the as-prepared composite also has been improved. Especially, the PBO-MOS2 reinforced TPI/PEEK composite showed excellent wear resistance and friction-reducing capacity at high temperature. The COF and wear rate reduced 22.9% and 61.1%, respectively, at 200 °C.
•A novel antiwear filler Nano-MOS2 capped PBO fiber was synthesized via an economical one-pot hydrothermal method.•PBO-MOS2 was used to reinforce the tribological property and thermal stability of TPI/PEEK matrix.•This enhancement is beneficial to stress transition from the matrix to fiber during friction and wear process.</description><identifier>ISSN: 0301-679X</identifier><identifier>EISSN: 1879-2464</identifier><identifier>DOI: 10.1016/j.triboint.2019.106117</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Friction reduction ; Friction resistance ; High temperature ; Lubrication ; PBO fiber ; Polymer matrix composites ; Stress transfer ; Thermal stability ; Tribology ; Wear ; Wear rate ; Wear resistance</subject><ispartof>Tribology international, 2020-04, Vol.144, p.106117, Article 106117</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Apr 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-53d3207b5931a9b78d883dc4ac8feea31e2427242d1146e586baaad643d127c13</citedby><cites>FETCH-LOGICAL-c340t-53d3207b5931a9b78d883dc4ac8feea31e2427242d1146e586baaad643d127c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0301679X19306310$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Yan, Yunfeng</creatorcontrib><creatorcontrib>Meng, Zhaojie</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Wang, Jianzhang</creatorcontrib><creatorcontrib>Chen, Beibei</creatorcontrib><creatorcontrib>Yan, Fengyuan</creatorcontrib><title>Nano-MOS2 modified PBO fiber hybrid for improving the tribological behavior and thermal stability of TPI/PEEK blends</title><title>Tribology international</title><description>A novel antiwear filler Nano-MOS2 capped PBO fiber was synthesized via an economical one-pot hydrothermal method and further be used to reinforce the tribological behavior of TPI/PEEK matrix at high temperature. Experimental results revealed that the as-prepared PBO-MOS2 fiber had stronger interfacial adhesion with the blended matrix(30%TPI/PEEK), when compared to the untreated PBO fiber. Therefore, this enhancement could be beneficial to stress transfer from the matrix to fiber during friction process. In addition, further experiment indicated that the mechanical property, thermal stability and lubrication performance of the as-prepared composite also has been improved. Especially, the PBO-MOS2 reinforced TPI/PEEK composite showed excellent wear resistance and friction-reducing capacity at high temperature. The COF and wear rate reduced 22.9% and 61.1%, respectively, at 200 °C.
•A novel antiwear filler Nano-MOS2 capped PBO fiber was synthesized via an economical one-pot hydrothermal method.•PBO-MOS2 was used to reinforce the tribological property and thermal stability of TPI/PEEK matrix.•This enhancement is beneficial to stress transition from the matrix to fiber during friction and wear process.</description><subject>Friction reduction</subject><subject>Friction resistance</subject><subject>High temperature</subject><subject>Lubrication</subject><subject>PBO fiber</subject><subject>Polymer matrix composites</subject><subject>Stress transfer</subject><subject>Thermal stability</subject><subject>Tribology</subject><subject>Wear</subject><subject>Wear rate</subject><subject>Wear resistance</subject><issn>0301-679X</issn><issn>1879-2464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUEtPGzEQtlCRmgJ_obLEeYNfsXdvtCgUxCORoFJvll9LJtqsqW0i5d_XIXDuYTTSzPeY-RD6TsmUEiov1tOSwEYYy5QR2tWhpFQdoQltVdcwIcUXNCGc0Eaq7s9X9C3nNSFEiU5NUHk0Y2weFk8Mb6KHHoLHy58L3IMNCa92NoHHfUwYNq8pbmF8wWUV8LvjEF_AmQHbsDJbqBgz-v02beowF2NhgLLDscfPy9uL5Xx-h-0QRp9P0XFvhhzOPvoJ-n09f766ae4Xv26vftw3jgtSmhn3nBFlZx2nprOq9W3LvRPGtX0IhtPABFO1PKVChlkrrTHGS8E9ZcpRfoLOD7r19L9vIRe9jm9prJaacSU7IRhpK0oeUC7FnFPo9WuCjUk7TYneJ6zX-jNhvU9YHxKuxMsDMdQfthCSzg7C6IKHFFzRPsL_JP4B0AmH3g</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Yan, Yunfeng</creator><creator>Meng, Zhaojie</creator><creator>Liu, Hao</creator><creator>Wang, Jianzhang</creator><creator>Chen, Beibei</creator><creator>Yan, Fengyuan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>202004</creationdate><title>Nano-MOS2 modified PBO fiber hybrid for improving the tribological behavior and thermal stability of TPI/PEEK blends</title><author>Yan, Yunfeng ; Meng, Zhaojie ; Liu, Hao ; Wang, Jianzhang ; Chen, Beibei ; Yan, Fengyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-53d3207b5931a9b78d883dc4ac8feea31e2427242d1146e586baaad643d127c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Friction reduction</topic><topic>Friction resistance</topic><topic>High temperature</topic><topic>Lubrication</topic><topic>PBO fiber</topic><topic>Polymer matrix composites</topic><topic>Stress transfer</topic><topic>Thermal stability</topic><topic>Tribology</topic><topic>Wear</topic><topic>Wear rate</topic><topic>Wear resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Yunfeng</creatorcontrib><creatorcontrib>Meng, Zhaojie</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Wang, Jianzhang</creatorcontrib><creatorcontrib>Chen, Beibei</creatorcontrib><creatorcontrib>Yan, Fengyuan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Tribology international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Yunfeng</au><au>Meng, Zhaojie</au><au>Liu, Hao</au><au>Wang, Jianzhang</au><au>Chen, Beibei</au><au>Yan, Fengyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nano-MOS2 modified PBO fiber hybrid for improving the tribological behavior and thermal stability of TPI/PEEK blends</atitle><jtitle>Tribology international</jtitle><date>2020-04</date><risdate>2020</risdate><volume>144</volume><spage>106117</spage><pages>106117-</pages><artnum>106117</artnum><issn>0301-679X</issn><eissn>1879-2464</eissn><abstract>A novel antiwear filler Nano-MOS2 capped PBO fiber was synthesized via an economical one-pot hydrothermal method and further be used to reinforce the tribological behavior of TPI/PEEK matrix at high temperature. Experimental results revealed that the as-prepared PBO-MOS2 fiber had stronger interfacial adhesion with the blended matrix(30%TPI/PEEK), when compared to the untreated PBO fiber. Therefore, this enhancement could be beneficial to stress transfer from the matrix to fiber during friction process. In addition, further experiment indicated that the mechanical property, thermal stability and lubrication performance of the as-prepared composite also has been improved. Especially, the PBO-MOS2 reinforced TPI/PEEK composite showed excellent wear resistance and friction-reducing capacity at high temperature. The COF and wear rate reduced 22.9% and 61.1%, respectively, at 200 °C.
•A novel antiwear filler Nano-MOS2 capped PBO fiber was synthesized via an economical one-pot hydrothermal method.•PBO-MOS2 was used to reinforce the tribological property and thermal stability of TPI/PEEK matrix.•This enhancement is beneficial to stress transition from the matrix to fiber during friction and wear process.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.triboint.2019.106117</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-679X |
ispartof | Tribology international, 2020-04, Vol.144, p.106117, Article 106117 |
issn | 0301-679X 1879-2464 |
language | eng |
recordid | cdi_proquest_journals_2376944208 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Friction reduction Friction resistance High temperature Lubrication PBO fiber Polymer matrix composites Stress transfer Thermal stability Tribology Wear Wear rate Wear resistance |
title | Nano-MOS2 modified PBO fiber hybrid for improving the tribological behavior and thermal stability of TPI/PEEK blends |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T20%3A44%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nano-MOS2%20modified%20PBO%20fiber%20hybrid%20for%20improving%20the%20tribological%20behavior%20and%20thermal%20stability%20of%20TPI/PEEK%20blends&rft.jtitle=Tribology%20international&rft.au=Yan,%20Yunfeng&rft.date=2020-04&rft.volume=144&rft.spage=106117&rft.pages=106117-&rft.artnum=106117&rft.issn=0301-679X&rft.eissn=1879-2464&rft_id=info:doi/10.1016/j.triboint.2019.106117&rft_dat=%3Cproquest_cross%3E2376944208%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376944208&rft_id=info:pmid/&rft_els_id=S0301679X19306310&rfr_iscdi=true |