Post‐installation adaptation of offshore wind turbine controls
The cost of offshore wind energy can be reduced by incorporating control strategies to reduce the support structures' load effects into the structural design process. While effective in reducing the cost of support structures, load‐reducing controls produce potentially costly side effects in ot...
Gespeichert in:
Veröffentlicht in: | Wind energy (Chichester, England) England), 2020-04, Vol.23 (4), p.967-985 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 985 |
---|---|
container_issue | 4 |
container_start_page | 967 |
container_title | Wind energy (Chichester, England) |
container_volume | 23 |
creator | Smilden, Emil Sørum, Stian H. Bachynski, Erin E. Sørensen, Asgeir J. Amdahl, Jørgen |
description | The cost of offshore wind energy can be reduced by incorporating control strategies to reduce the support structures' load effects into the structural design process. While effective in reducing the cost of support structures, load‐reducing controls produce potentially costly side effects in other wind turbine components and subsystems. This paper proposes a methodology to mitigate these side effects at the wind farm level. The interaction between the foundation and the surrounding soil is a major source of uncertainty in estimating the safety margins of support structures. The safety margins are generally closely correlated with the modal properties (natural frequencies, damping ratios). This admits the possibility of using modal identification techniques to reassess the structural safety after installing and commissioning the wind farm. Since design standards require conservative design margins, the post‐installation safety assessment is likely to reveal better than expected structural safety performance. Thus, if load‐reducing controls have been adopted in the structural design process, it is likely permissible to reduce the use of these during actual operation. Here, the probabilistic outcome of such a two‐stage controls adaptation is analyzed. The analysis considers the structural design of a 10 MW monopile offshore wind turbine under uncertainty in the site‐specific soil conditions. Two control strategies are considered in separate analyses: (a) tower feedback control to increase the support structure's fatigue life and (b) peak shaving to increase the support structure's serviceability capacity. The results show that a post‐installation adaptation can reduce the farm‐level side‐effects of load‐reducing controls by up to an order of magnitude. |
doi_str_mv | 10.1002/we.2467 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2376774340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376774340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3807-b64ac1b24047b6f97b57f7ba7aedec5b27957eebf026353fc8cc14d7d4acdb0b3</originalsourceid><addsrcrecordid>eNp10M1KxDAQB_AgCq6r-AoFDx6k6yRNO-1NWdYPWNCD4jEkaYJdarMmWcrefASf0Sexu_UqDMwcfjMDf0LOKcwoALvuzYzxAg_IhEJVpbRk_HA_5ylnnB-TkxBWABQoLSfk5tmF-PP13XQhyraVsXFdImu5juPo7FA2vDtvkr7p6iRuvGo6k2jXRe_acEqOrGyDOfvrU_J6t3iZP6TLp_vH-e0y1VkJmKqCS00V48BRFbZClaNFJVGa2uhcMaxyNEZZYEWWZ1aXWlNeYz2s1QpUNiUX4921d58bE6JYuY3vhpeCZVgg8ozDoC5Hpb0LwRsr1r75kH4rKIhdPKI3YhfPIK9G2Tet2f7HxNtir38B145nMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376774340</pqid></control><display><type>article</type><title>Post‐installation adaptation of offshore wind turbine controls</title><source>Access via Wiley Online Library</source><creator>Smilden, Emil ; Sørum, Stian H. ; Bachynski, Erin E. ; Sørensen, Asgeir J. ; Amdahl, Jørgen</creator><creatorcontrib>Smilden, Emil ; Sørum, Stian H. ; Bachynski, Erin E. ; Sørensen, Asgeir J. ; Amdahl, Jørgen</creatorcontrib><description>The cost of offshore wind energy can be reduced by incorporating control strategies to reduce the support structures' load effects into the structural design process. While effective in reducing the cost of support structures, load‐reducing controls produce potentially costly side effects in other wind turbine components and subsystems. This paper proposes a methodology to mitigate these side effects at the wind farm level. The interaction between the foundation and the surrounding soil is a major source of uncertainty in estimating the safety margins of support structures. The safety margins are generally closely correlated with the modal properties (natural frequencies, damping ratios). This admits the possibility of using modal identification techniques to reassess the structural safety after installing and commissioning the wind farm. Since design standards require conservative design margins, the post‐installation safety assessment is likely to reveal better than expected structural safety performance. Thus, if load‐reducing controls have been adopted in the structural design process, it is likely permissible to reduce the use of these during actual operation. Here, the probabilistic outcome of such a two‐stage controls adaptation is analyzed. The analysis considers the structural design of a 10 MW monopile offshore wind turbine under uncertainty in the site‐specific soil conditions. Two control strategies are considered in separate analyses: (a) tower feedback control to increase the support structure's fatigue life and (b) peak shaving to increase the support structure's serviceability capacity. The results show that a post‐installation adaptation can reduce the farm‐level side‐effects of load‐reducing controls by up to an order of magnitude.</description><identifier>ISSN: 1095-4244</identifier><identifier>EISSN: 1099-1824</identifier><identifier>DOI: 10.1002/we.2467</identifier><language>eng</language><publisher>Bognor Regis: John Wiley & Sons, Inc</publisher><subject>Adaptation ; control design ; Damping ratio ; Design ; Design margins ; Design standards ; Fatigue life ; Feedback control ; geotechnical design ; Installation ; Modal identification ; Offshore ; Offshore energy sources ; Offshore operations ; Offshore structures ; offshore wind energy ; Resonant frequencies ; Safety ; Safety margins ; Side effects ; Soil conditions ; Soils ; Structural design ; Structural engineering ; structural health monitoring ; structural reliability ; Structural safety ; Subsystems ; Turbines ; Uncertainty ; Wind effects ; Wind farms ; Wind power ; Wind power generation ; Wind turbines</subject><ispartof>Wind energy (Chichester, England), 2020-04, Vol.23 (4), p.967-985</ispartof><rights>2020 The Authors. Wind Energy published by John Wiley & Sons Ltd</rights><rights>2020 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3807-b64ac1b24047b6f97b57f7ba7aedec5b27957eebf026353fc8cc14d7d4acdb0b3</citedby><cites>FETCH-LOGICAL-c3807-b64ac1b24047b6f97b57f7ba7aedec5b27957eebf026353fc8cc14d7d4acdb0b3</cites><orcidid>0000-0002-1471-8254 ; 0000-0001-8547-9353</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwe.2467$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwe.2467$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Smilden, Emil</creatorcontrib><creatorcontrib>Sørum, Stian H.</creatorcontrib><creatorcontrib>Bachynski, Erin E.</creatorcontrib><creatorcontrib>Sørensen, Asgeir J.</creatorcontrib><creatorcontrib>Amdahl, Jørgen</creatorcontrib><title>Post‐installation adaptation of offshore wind turbine controls</title><title>Wind energy (Chichester, England)</title><description>The cost of offshore wind energy can be reduced by incorporating control strategies to reduce the support structures' load effects into the structural design process. While effective in reducing the cost of support structures, load‐reducing controls produce potentially costly side effects in other wind turbine components and subsystems. This paper proposes a methodology to mitigate these side effects at the wind farm level. The interaction between the foundation and the surrounding soil is a major source of uncertainty in estimating the safety margins of support structures. The safety margins are generally closely correlated with the modal properties (natural frequencies, damping ratios). This admits the possibility of using modal identification techniques to reassess the structural safety after installing and commissioning the wind farm. Since design standards require conservative design margins, the post‐installation safety assessment is likely to reveal better than expected structural safety performance. Thus, if load‐reducing controls have been adopted in the structural design process, it is likely permissible to reduce the use of these during actual operation. Here, the probabilistic outcome of such a two‐stage controls adaptation is analyzed. The analysis considers the structural design of a 10 MW monopile offshore wind turbine under uncertainty in the site‐specific soil conditions. Two control strategies are considered in separate analyses: (a) tower feedback control to increase the support structure's fatigue life and (b) peak shaving to increase the support structure's serviceability capacity. The results show that a post‐installation adaptation can reduce the farm‐level side‐effects of load‐reducing controls by up to an order of magnitude.</description><subject>Adaptation</subject><subject>control design</subject><subject>Damping ratio</subject><subject>Design</subject><subject>Design margins</subject><subject>Design standards</subject><subject>Fatigue life</subject><subject>Feedback control</subject><subject>geotechnical design</subject><subject>Installation</subject><subject>Modal identification</subject><subject>Offshore</subject><subject>Offshore energy sources</subject><subject>Offshore operations</subject><subject>Offshore structures</subject><subject>offshore wind energy</subject><subject>Resonant frequencies</subject><subject>Safety</subject><subject>Safety margins</subject><subject>Side effects</subject><subject>Soil conditions</subject><subject>Soils</subject><subject>Structural design</subject><subject>Structural engineering</subject><subject>structural health monitoring</subject><subject>structural reliability</subject><subject>Structural safety</subject><subject>Subsystems</subject><subject>Turbines</subject><subject>Uncertainty</subject><subject>Wind effects</subject><subject>Wind farms</subject><subject>Wind power</subject><subject>Wind power generation</subject><subject>Wind turbines</subject><issn>1095-4244</issn><issn>1099-1824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp10M1KxDAQB_AgCq6r-AoFDx6k6yRNO-1NWdYPWNCD4jEkaYJdarMmWcrefASf0Sexu_UqDMwcfjMDf0LOKcwoALvuzYzxAg_IhEJVpbRk_HA_5ylnnB-TkxBWABQoLSfk5tmF-PP13XQhyraVsXFdImu5juPo7FA2vDtvkr7p6iRuvGo6k2jXRe_acEqOrGyDOfvrU_J6t3iZP6TLp_vH-e0y1VkJmKqCS00V48BRFbZClaNFJVGa2uhcMaxyNEZZYEWWZ1aXWlNeYz2s1QpUNiUX4921d58bE6JYuY3vhpeCZVgg8ozDoC5Hpb0LwRsr1r75kH4rKIhdPKI3YhfPIK9G2Tet2f7HxNtir38B145nMA</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Smilden, Emil</creator><creator>Sørum, Stian H.</creator><creator>Bachynski, Erin E.</creator><creator>Sørensen, Asgeir J.</creator><creator>Amdahl, Jørgen</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-1471-8254</orcidid><orcidid>https://orcid.org/0000-0001-8547-9353</orcidid></search><sort><creationdate>202004</creationdate><title>Post‐installation adaptation of offshore wind turbine controls</title><author>Smilden, Emil ; Sørum, Stian H. ; Bachynski, Erin E. ; Sørensen, Asgeir J. ; Amdahl, Jørgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3807-b64ac1b24047b6f97b57f7ba7aedec5b27957eebf026353fc8cc14d7d4acdb0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation</topic><topic>control design</topic><topic>Damping ratio</topic><topic>Design</topic><topic>Design margins</topic><topic>Design standards</topic><topic>Fatigue life</topic><topic>Feedback control</topic><topic>geotechnical design</topic><topic>Installation</topic><topic>Modal identification</topic><topic>Offshore</topic><topic>Offshore energy sources</topic><topic>Offshore operations</topic><topic>Offshore structures</topic><topic>offshore wind energy</topic><topic>Resonant frequencies</topic><topic>Safety</topic><topic>Safety margins</topic><topic>Side effects</topic><topic>Soil conditions</topic><topic>Soils</topic><topic>Structural design</topic><topic>Structural engineering</topic><topic>structural health monitoring</topic><topic>structural reliability</topic><topic>Structural safety</topic><topic>Subsystems</topic><topic>Turbines</topic><topic>Uncertainty</topic><topic>Wind effects</topic><topic>Wind farms</topic><topic>Wind power</topic><topic>Wind power generation</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smilden, Emil</creatorcontrib><creatorcontrib>Sørum, Stian H.</creatorcontrib><creatorcontrib>Bachynski, Erin E.</creatorcontrib><creatorcontrib>Sørensen, Asgeir J.</creatorcontrib><creatorcontrib>Amdahl, Jørgen</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Wind energy (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smilden, Emil</au><au>Sørum, Stian H.</au><au>Bachynski, Erin E.</au><au>Sørensen, Asgeir J.</au><au>Amdahl, Jørgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Post‐installation adaptation of offshore wind turbine controls</atitle><jtitle>Wind energy (Chichester, England)</jtitle><date>2020-04</date><risdate>2020</risdate><volume>23</volume><issue>4</issue><spage>967</spage><epage>985</epage><pages>967-985</pages><issn>1095-4244</issn><eissn>1099-1824</eissn><abstract>The cost of offshore wind energy can be reduced by incorporating control strategies to reduce the support structures' load effects into the structural design process. While effective in reducing the cost of support structures, load‐reducing controls produce potentially costly side effects in other wind turbine components and subsystems. This paper proposes a methodology to mitigate these side effects at the wind farm level. The interaction between the foundation and the surrounding soil is a major source of uncertainty in estimating the safety margins of support structures. The safety margins are generally closely correlated with the modal properties (natural frequencies, damping ratios). This admits the possibility of using modal identification techniques to reassess the structural safety after installing and commissioning the wind farm. Since design standards require conservative design margins, the post‐installation safety assessment is likely to reveal better than expected structural safety performance. Thus, if load‐reducing controls have been adopted in the structural design process, it is likely permissible to reduce the use of these during actual operation. Here, the probabilistic outcome of such a two‐stage controls adaptation is analyzed. The analysis considers the structural design of a 10 MW monopile offshore wind turbine under uncertainty in the site‐specific soil conditions. Two control strategies are considered in separate analyses: (a) tower feedback control to increase the support structure's fatigue life and (b) peak shaving to increase the support structure's serviceability capacity. The results show that a post‐installation adaptation can reduce the farm‐level side‐effects of load‐reducing controls by up to an order of magnitude.</abstract><cop>Bognor Regis</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/we.2467</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-1471-8254</orcidid><orcidid>https://orcid.org/0000-0001-8547-9353</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1095-4244 |
ispartof | Wind energy (Chichester, England), 2020-04, Vol.23 (4), p.967-985 |
issn | 1095-4244 1099-1824 |
language | eng |
recordid | cdi_proquest_journals_2376774340 |
source | Access via Wiley Online Library |
subjects | Adaptation control design Damping ratio Design Design margins Design standards Fatigue life Feedback control geotechnical design Installation Modal identification Offshore Offshore energy sources Offshore operations Offshore structures offshore wind energy Resonant frequencies Safety Safety margins Side effects Soil conditions Soils Structural design Structural engineering structural health monitoring structural reliability Structural safety Subsystems Turbines Uncertainty Wind effects Wind farms Wind power Wind power generation Wind turbines |
title | Post‐installation adaptation of offshore wind turbine controls |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T08%3A17%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Post%E2%80%90installation%20adaptation%20of%20offshore%20wind%20turbine%20controls&rft.jtitle=Wind%20energy%20(Chichester,%20England)&rft.au=Smilden,%20Emil&rft.date=2020-04&rft.volume=23&rft.issue=4&rft.spage=967&rft.epage=985&rft.pages=967-985&rft.issn=1095-4244&rft.eissn=1099-1824&rft_id=info:doi/10.1002/we.2467&rft_dat=%3Cproquest_cross%3E2376774340%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376774340&rft_id=info:pmid/&rfr_iscdi=true |