Post‐installation adaptation of offshore wind turbine controls

The cost of offshore wind energy can be reduced by incorporating control strategies to reduce the support structures' load effects into the structural design process. While effective in reducing the cost of support structures, load‐reducing controls produce potentially costly side effects in ot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wind energy (Chichester, England) England), 2020-04, Vol.23 (4), p.967-985
Hauptverfasser: Smilden, Emil, Sørum, Stian H., Bachynski, Erin E., Sørensen, Asgeir J., Amdahl, Jørgen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 985
container_issue 4
container_start_page 967
container_title Wind energy (Chichester, England)
container_volume 23
creator Smilden, Emil
Sørum, Stian H.
Bachynski, Erin E.
Sørensen, Asgeir J.
Amdahl, Jørgen
description The cost of offshore wind energy can be reduced by incorporating control strategies to reduce the support structures' load effects into the structural design process. While effective in reducing the cost of support structures, load‐reducing controls produce potentially costly side effects in other wind turbine components and subsystems. This paper proposes a methodology to mitigate these side effects at the wind farm level. The interaction between the foundation and the surrounding soil is a major source of uncertainty in estimating the safety margins of support structures. The safety margins are generally closely correlated with the modal properties (natural frequencies, damping ratios). This admits the possibility of using modal identification techniques to reassess the structural safety after installing and commissioning the wind farm. Since design standards require conservative design margins, the post‐installation safety assessment is likely to reveal better than expected structural safety performance. Thus, if load‐reducing controls have been adopted in the structural design process, it is likely permissible to reduce the use of these during actual operation. Here, the probabilistic outcome of such a two‐stage controls adaptation is analyzed. The analysis considers the structural design of a 10 MW monopile offshore wind turbine under uncertainty in the site‐specific soil conditions. Two control strategies are considered in separate analyses: (a) tower feedback control to increase the support structure's fatigue life and (b) peak shaving to increase the support structure's serviceability capacity. The results show that a post‐installation adaptation can reduce the farm‐level side‐effects of load‐reducing controls by up to an order of magnitude.
doi_str_mv 10.1002/we.2467
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2376774340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376774340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3807-b64ac1b24047b6f97b57f7ba7aedec5b27957eebf026353fc8cc14d7d4acdb0b3</originalsourceid><addsrcrecordid>eNp10M1KxDAQB_AgCq6r-AoFDx6k6yRNO-1NWdYPWNCD4jEkaYJdarMmWcrefASf0Sexu_UqDMwcfjMDf0LOKcwoALvuzYzxAg_IhEJVpbRk_HA_5ylnnB-TkxBWABQoLSfk5tmF-PP13XQhyraVsXFdImu5juPo7FA2vDtvkr7p6iRuvGo6k2jXRe_acEqOrGyDOfvrU_J6t3iZP6TLp_vH-e0y1VkJmKqCS00V48BRFbZClaNFJVGa2uhcMaxyNEZZYEWWZ1aXWlNeYz2s1QpUNiUX4921d58bE6JYuY3vhpeCZVgg8ozDoC5Hpb0LwRsr1r75kH4rKIhdPKI3YhfPIK9G2Tet2f7HxNtir38B145nMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376774340</pqid></control><display><type>article</type><title>Post‐installation adaptation of offshore wind turbine controls</title><source>Access via Wiley Online Library</source><creator>Smilden, Emil ; Sørum, Stian H. ; Bachynski, Erin E. ; Sørensen, Asgeir J. ; Amdahl, Jørgen</creator><creatorcontrib>Smilden, Emil ; Sørum, Stian H. ; Bachynski, Erin E. ; Sørensen, Asgeir J. ; Amdahl, Jørgen</creatorcontrib><description>The cost of offshore wind energy can be reduced by incorporating control strategies to reduce the support structures' load effects into the structural design process. While effective in reducing the cost of support structures, load‐reducing controls produce potentially costly side effects in other wind turbine components and subsystems. This paper proposes a methodology to mitigate these side effects at the wind farm level. The interaction between the foundation and the surrounding soil is a major source of uncertainty in estimating the safety margins of support structures. The safety margins are generally closely correlated with the modal properties (natural frequencies, damping ratios). This admits the possibility of using modal identification techniques to reassess the structural safety after installing and commissioning the wind farm. Since design standards require conservative design margins, the post‐installation safety assessment is likely to reveal better than expected structural safety performance. Thus, if load‐reducing controls have been adopted in the structural design process, it is likely permissible to reduce the use of these during actual operation. Here, the probabilistic outcome of such a two‐stage controls adaptation is analyzed. The analysis considers the structural design of a 10 MW monopile offshore wind turbine under uncertainty in the site‐specific soil conditions. Two control strategies are considered in separate analyses: (a) tower feedback control to increase the support structure's fatigue life and (b) peak shaving to increase the support structure's serviceability capacity. The results show that a post‐installation adaptation can reduce the farm‐level side‐effects of load‐reducing controls by up to an order of magnitude.</description><identifier>ISSN: 1095-4244</identifier><identifier>EISSN: 1099-1824</identifier><identifier>DOI: 10.1002/we.2467</identifier><language>eng</language><publisher>Bognor Regis: John Wiley &amp; Sons, Inc</publisher><subject>Adaptation ; control design ; Damping ratio ; Design ; Design margins ; Design standards ; Fatigue life ; Feedback control ; geotechnical design ; Installation ; Modal identification ; Offshore ; Offshore energy sources ; Offshore operations ; Offshore structures ; offshore wind energy ; Resonant frequencies ; Safety ; Safety margins ; Side effects ; Soil conditions ; Soils ; Structural design ; Structural engineering ; structural health monitoring ; structural reliability ; Structural safety ; Subsystems ; Turbines ; Uncertainty ; Wind effects ; Wind farms ; Wind power ; Wind power generation ; Wind turbines</subject><ispartof>Wind energy (Chichester, England), 2020-04, Vol.23 (4), p.967-985</ispartof><rights>2020 The Authors. Wind Energy published by John Wiley &amp; Sons Ltd</rights><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3807-b64ac1b24047b6f97b57f7ba7aedec5b27957eebf026353fc8cc14d7d4acdb0b3</citedby><cites>FETCH-LOGICAL-c3807-b64ac1b24047b6f97b57f7ba7aedec5b27957eebf026353fc8cc14d7d4acdb0b3</cites><orcidid>0000-0002-1471-8254 ; 0000-0001-8547-9353</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwe.2467$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwe.2467$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Smilden, Emil</creatorcontrib><creatorcontrib>Sørum, Stian H.</creatorcontrib><creatorcontrib>Bachynski, Erin E.</creatorcontrib><creatorcontrib>Sørensen, Asgeir J.</creatorcontrib><creatorcontrib>Amdahl, Jørgen</creatorcontrib><title>Post‐installation adaptation of offshore wind turbine controls</title><title>Wind energy (Chichester, England)</title><description>The cost of offshore wind energy can be reduced by incorporating control strategies to reduce the support structures' load effects into the structural design process. While effective in reducing the cost of support structures, load‐reducing controls produce potentially costly side effects in other wind turbine components and subsystems. This paper proposes a methodology to mitigate these side effects at the wind farm level. The interaction between the foundation and the surrounding soil is a major source of uncertainty in estimating the safety margins of support structures. The safety margins are generally closely correlated with the modal properties (natural frequencies, damping ratios). This admits the possibility of using modal identification techniques to reassess the structural safety after installing and commissioning the wind farm. Since design standards require conservative design margins, the post‐installation safety assessment is likely to reveal better than expected structural safety performance. Thus, if load‐reducing controls have been adopted in the structural design process, it is likely permissible to reduce the use of these during actual operation. Here, the probabilistic outcome of such a two‐stage controls adaptation is analyzed. The analysis considers the structural design of a 10 MW monopile offshore wind turbine under uncertainty in the site‐specific soil conditions. Two control strategies are considered in separate analyses: (a) tower feedback control to increase the support structure's fatigue life and (b) peak shaving to increase the support structure's serviceability capacity. The results show that a post‐installation adaptation can reduce the farm‐level side‐effects of load‐reducing controls by up to an order of magnitude.</description><subject>Adaptation</subject><subject>control design</subject><subject>Damping ratio</subject><subject>Design</subject><subject>Design margins</subject><subject>Design standards</subject><subject>Fatigue life</subject><subject>Feedback control</subject><subject>geotechnical design</subject><subject>Installation</subject><subject>Modal identification</subject><subject>Offshore</subject><subject>Offshore energy sources</subject><subject>Offshore operations</subject><subject>Offshore structures</subject><subject>offshore wind energy</subject><subject>Resonant frequencies</subject><subject>Safety</subject><subject>Safety margins</subject><subject>Side effects</subject><subject>Soil conditions</subject><subject>Soils</subject><subject>Structural design</subject><subject>Structural engineering</subject><subject>structural health monitoring</subject><subject>structural reliability</subject><subject>Structural safety</subject><subject>Subsystems</subject><subject>Turbines</subject><subject>Uncertainty</subject><subject>Wind effects</subject><subject>Wind farms</subject><subject>Wind power</subject><subject>Wind power generation</subject><subject>Wind turbines</subject><issn>1095-4244</issn><issn>1099-1824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp10M1KxDAQB_AgCq6r-AoFDx6k6yRNO-1NWdYPWNCD4jEkaYJdarMmWcrefASf0Sexu_UqDMwcfjMDf0LOKcwoALvuzYzxAg_IhEJVpbRk_HA_5ylnnB-TkxBWABQoLSfk5tmF-PP13XQhyraVsXFdImu5juPo7FA2vDtvkr7p6iRuvGo6k2jXRe_acEqOrGyDOfvrU_J6t3iZP6TLp_vH-e0y1VkJmKqCS00V48BRFbZClaNFJVGa2uhcMaxyNEZZYEWWZ1aXWlNeYz2s1QpUNiUX4921d58bE6JYuY3vhpeCZVgg8ozDoC5Hpb0LwRsr1r75kH4rKIhdPKI3YhfPIK9G2Tet2f7HxNtir38B145nMA</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Smilden, Emil</creator><creator>Sørum, Stian H.</creator><creator>Bachynski, Erin E.</creator><creator>Sørensen, Asgeir J.</creator><creator>Amdahl, Jørgen</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-1471-8254</orcidid><orcidid>https://orcid.org/0000-0001-8547-9353</orcidid></search><sort><creationdate>202004</creationdate><title>Post‐installation adaptation of offshore wind turbine controls</title><author>Smilden, Emil ; Sørum, Stian H. ; Bachynski, Erin E. ; Sørensen, Asgeir J. ; Amdahl, Jørgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3807-b64ac1b24047b6f97b57f7ba7aedec5b27957eebf026353fc8cc14d7d4acdb0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation</topic><topic>control design</topic><topic>Damping ratio</topic><topic>Design</topic><topic>Design margins</topic><topic>Design standards</topic><topic>Fatigue life</topic><topic>Feedback control</topic><topic>geotechnical design</topic><topic>Installation</topic><topic>Modal identification</topic><topic>Offshore</topic><topic>Offshore energy sources</topic><topic>Offshore operations</topic><topic>Offshore structures</topic><topic>offshore wind energy</topic><topic>Resonant frequencies</topic><topic>Safety</topic><topic>Safety margins</topic><topic>Side effects</topic><topic>Soil conditions</topic><topic>Soils</topic><topic>Structural design</topic><topic>Structural engineering</topic><topic>structural health monitoring</topic><topic>structural reliability</topic><topic>Structural safety</topic><topic>Subsystems</topic><topic>Turbines</topic><topic>Uncertainty</topic><topic>Wind effects</topic><topic>Wind farms</topic><topic>Wind power</topic><topic>Wind power generation</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smilden, Emil</creatorcontrib><creatorcontrib>Sørum, Stian H.</creatorcontrib><creatorcontrib>Bachynski, Erin E.</creatorcontrib><creatorcontrib>Sørensen, Asgeir J.</creatorcontrib><creatorcontrib>Amdahl, Jørgen</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Wind energy (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smilden, Emil</au><au>Sørum, Stian H.</au><au>Bachynski, Erin E.</au><au>Sørensen, Asgeir J.</au><au>Amdahl, Jørgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Post‐installation adaptation of offshore wind turbine controls</atitle><jtitle>Wind energy (Chichester, England)</jtitle><date>2020-04</date><risdate>2020</risdate><volume>23</volume><issue>4</issue><spage>967</spage><epage>985</epage><pages>967-985</pages><issn>1095-4244</issn><eissn>1099-1824</eissn><abstract>The cost of offshore wind energy can be reduced by incorporating control strategies to reduce the support structures' load effects into the structural design process. While effective in reducing the cost of support structures, load‐reducing controls produce potentially costly side effects in other wind turbine components and subsystems. This paper proposes a methodology to mitigate these side effects at the wind farm level. The interaction between the foundation and the surrounding soil is a major source of uncertainty in estimating the safety margins of support structures. The safety margins are generally closely correlated with the modal properties (natural frequencies, damping ratios). This admits the possibility of using modal identification techniques to reassess the structural safety after installing and commissioning the wind farm. Since design standards require conservative design margins, the post‐installation safety assessment is likely to reveal better than expected structural safety performance. Thus, if load‐reducing controls have been adopted in the structural design process, it is likely permissible to reduce the use of these during actual operation. Here, the probabilistic outcome of such a two‐stage controls adaptation is analyzed. The analysis considers the structural design of a 10 MW monopile offshore wind turbine under uncertainty in the site‐specific soil conditions. Two control strategies are considered in separate analyses: (a) tower feedback control to increase the support structure's fatigue life and (b) peak shaving to increase the support structure's serviceability capacity. The results show that a post‐installation adaptation can reduce the farm‐level side‐effects of load‐reducing controls by up to an order of magnitude.</abstract><cop>Bognor Regis</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/we.2467</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-1471-8254</orcidid><orcidid>https://orcid.org/0000-0001-8547-9353</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1095-4244
ispartof Wind energy (Chichester, England), 2020-04, Vol.23 (4), p.967-985
issn 1095-4244
1099-1824
language eng
recordid cdi_proquest_journals_2376774340
source Access via Wiley Online Library
subjects Adaptation
control design
Damping ratio
Design
Design margins
Design standards
Fatigue life
Feedback control
geotechnical design
Installation
Modal identification
Offshore
Offshore energy sources
Offshore operations
Offshore structures
offshore wind energy
Resonant frequencies
Safety
Safety margins
Side effects
Soil conditions
Soils
Structural design
Structural engineering
structural health monitoring
structural reliability
Structural safety
Subsystems
Turbines
Uncertainty
Wind effects
Wind farms
Wind power
Wind power generation
Wind turbines
title Post‐installation adaptation of offshore wind turbine controls
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T08%3A17%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Post%E2%80%90installation%20adaptation%20of%20offshore%20wind%20turbine%20controls&rft.jtitle=Wind%20energy%20(Chichester,%20England)&rft.au=Smilden,%20Emil&rft.date=2020-04&rft.volume=23&rft.issue=4&rft.spage=967&rft.epage=985&rft.pages=967-985&rft.issn=1095-4244&rft.eissn=1099-1824&rft_id=info:doi/10.1002/we.2467&rft_dat=%3Cproquest_cross%3E2376774340%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376774340&rft_id=info:pmid/&rfr_iscdi=true