Switched-Capacitor Differential Boost Inverter: Design, Modeling, and Control
This article addresses a single-stage bidirectional step-up inverter designed from the integration of a differential boost inverter and switched-capacitor (SC) cells. The conventional boost inverter, even being a step-up topology, presents a gain limitation due to losses, and therefore, does not ful...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2020-07, Vol.67 (7), p.5421-5431 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5431 |
---|---|
container_issue | 7 |
container_start_page | 5421 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 67 |
creator | Silva, Gilberto Valentim de Andrade, Jessika Melo Coelho, Roberto F. Lazzarin, Telles Brunelli |
description | This article addresses a single-stage bidirectional step-up inverter designed from the integration of a differential boost inverter and switched-capacitor (SC) cells. The conventional boost inverter, even being a step-up topology, presents a gain limitation due to losses, and therefore, does not fully attend the step-up specifications. The insertion of SC multiplier cells into it allows increasing its static gain without increasing the voltage stresses on its components. However, the resulting topology is nonlinear and contains a high amount of energy storage elements, which implies high-order models. In this article, static and dynamic analysis of the SC differential boost inverter is performed under different types of modulation. A generalized and reduced order equivalent circuit and a small-signal average model are proposed, as well as a static gain linearization technique that reduces the harmonic distortion of the output voltage, regulated in the closed loop by a resonant controller. This article also presents the main waveforms, equation, and a comparison between the differential boost inverter and its version with SC multiplier cells. To verify this study, a 250-W prototype of the rated power, input voltage of 60 V, switching frequency of 50 kHz, and the output voltage of 220 V is experimentally evaluated. |
doi_str_mv | 10.1109/TIE.2019.2931258 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2376748900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8786918</ieee_id><sourcerecordid>2376748900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-92701f1c00999f0264c03d782b168ed258fc0cb8232f14ef5e8257e1274ee3dd3</originalsourceid><addsrcrecordid>eNo9kDFPwzAQhS0EEqWwI7FEYm3K2Y5jmw3SApVaMVDmKHXOxVWIi52C-PekasX0lu_dPX2EXFMYUwr6bjmbjhlQPWaaUybUCRlQIWSqdaZOyQCYVClAlp-Tixg3ADQTVAzI4u3HdeYD67SotpVxnQ_JxFmLAdvOVU3y6H3skln7jaHDcJ9MMLp1O0oWvsbGtetRUrV1Uvi2C765JGe2aiJeHXNI3p-my-Ilnb8-z4qHeWq4kF2qmQRqqQHQWltgeWaA11KxFc0V1v16a8CsFOPM0gytQMWERMpkhsjrmg_J7eHuNvivHcau3PhdaPuXJeMyl5nSAD0FB8oEH2NAW26D-6zCb0mh3Esre2nlXlp5lNZXbg4Vh4j_uJIq11TxP_W6ZrY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376748900</pqid></control><display><type>article</type><title>Switched-Capacitor Differential Boost Inverter: Design, Modeling, and Control</title><source>IEEE Electronic Library (IEL)</source><creator>Silva, Gilberto Valentim ; de Andrade, Jessika Melo ; Coelho, Roberto F. ; Lazzarin, Telles Brunelli</creator><creatorcontrib>Silva, Gilberto Valentim ; de Andrade, Jessika Melo ; Coelho, Roberto F. ; Lazzarin, Telles Brunelli</creatorcontrib><description>This article addresses a single-stage bidirectional step-up inverter designed from the integration of a differential boost inverter and switched-capacitor (SC) cells. The conventional boost inverter, even being a step-up topology, presents a gain limitation due to losses, and therefore, does not fully attend the step-up specifications. The insertion of SC multiplier cells into it allows increasing its static gain without increasing the voltage stresses on its components. However, the resulting topology is nonlinear and contains a high amount of energy storage elements, which implies high-order models. In this article, static and dynamic analysis of the SC differential boost inverter is performed under different types of modulation. A generalized and reduced order equivalent circuit and a small-signal average model are proposed, as well as a static gain linearization technique that reduces the harmonic distortion of the output voltage, regulated in the closed loop by a resonant controller. This article also presents the main waveforms, equation, and a comparison between the differential boost inverter and its version with SC multiplier cells. To verify this study, a 250-W prototype of the rated power, input voltage of 60 V, switching frequency of 50 kHz, and the output voltage of 220 V is experimentally evaluated.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2019.2931258</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacitors ; Closed loops ; Differential boost inverter (DBI) ; Differential equations ; Electric potential ; Energy storage ; Equivalent circuits ; gain linearization ; Harmonic distortion ; Inductors ; Inverters ; modeling and control ; Modulation ; switched capacitor (SC) ; Switches ; Topology ; Voltage ; Voltage control ; Waveforms</subject><ispartof>IEEE transactions on industrial electronics (1982), 2020-07, Vol.67 (7), p.5421-5431</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-92701f1c00999f0264c03d782b168ed258fc0cb8232f14ef5e8257e1274ee3dd3</citedby><cites>FETCH-LOGICAL-c357t-92701f1c00999f0264c03d782b168ed258fc0cb8232f14ef5e8257e1274ee3dd3</cites><orcidid>0000-0001-8598-8641 ; 0000-0002-4672-0885 ; 0000-0003-2974-5711 ; 0000-0003-3994-5442</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8786918$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8786918$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Silva, Gilberto Valentim</creatorcontrib><creatorcontrib>de Andrade, Jessika Melo</creatorcontrib><creatorcontrib>Coelho, Roberto F.</creatorcontrib><creatorcontrib>Lazzarin, Telles Brunelli</creatorcontrib><title>Switched-Capacitor Differential Boost Inverter: Design, Modeling, and Control</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>This article addresses a single-stage bidirectional step-up inverter designed from the integration of a differential boost inverter and switched-capacitor (SC) cells. The conventional boost inverter, even being a step-up topology, presents a gain limitation due to losses, and therefore, does not fully attend the step-up specifications. The insertion of SC multiplier cells into it allows increasing its static gain without increasing the voltage stresses on its components. However, the resulting topology is nonlinear and contains a high amount of energy storage elements, which implies high-order models. In this article, static and dynamic analysis of the SC differential boost inverter is performed under different types of modulation. A generalized and reduced order equivalent circuit and a small-signal average model are proposed, as well as a static gain linearization technique that reduces the harmonic distortion of the output voltage, regulated in the closed loop by a resonant controller. This article also presents the main waveforms, equation, and a comparison between the differential boost inverter and its version with SC multiplier cells. To verify this study, a 250-W prototype of the rated power, input voltage of 60 V, switching frequency of 50 kHz, and the output voltage of 220 V is experimentally evaluated.</description><subject>Capacitors</subject><subject>Closed loops</subject><subject>Differential boost inverter (DBI)</subject><subject>Differential equations</subject><subject>Electric potential</subject><subject>Energy storage</subject><subject>Equivalent circuits</subject><subject>gain linearization</subject><subject>Harmonic distortion</subject><subject>Inductors</subject><subject>Inverters</subject><subject>modeling and control</subject><subject>Modulation</subject><subject>switched capacitor (SC)</subject><subject>Switches</subject><subject>Topology</subject><subject>Voltage</subject><subject>Voltage control</subject><subject>Waveforms</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kDFPwzAQhS0EEqWwI7FEYm3K2Y5jmw3SApVaMVDmKHXOxVWIi52C-PekasX0lu_dPX2EXFMYUwr6bjmbjhlQPWaaUybUCRlQIWSqdaZOyQCYVClAlp-Tixg3ADQTVAzI4u3HdeYD67SotpVxnQ_JxFmLAdvOVU3y6H3skln7jaHDcJ9MMLp1O0oWvsbGtetRUrV1Uvi2C765JGe2aiJeHXNI3p-my-Ilnb8-z4qHeWq4kF2qmQRqqQHQWltgeWaA11KxFc0V1v16a8CsFOPM0gytQMWERMpkhsjrmg_J7eHuNvivHcau3PhdaPuXJeMyl5nSAD0FB8oEH2NAW26D-6zCb0mh3Esre2nlXlp5lNZXbg4Vh4j_uJIq11TxP_W6ZrY</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Silva, Gilberto Valentim</creator><creator>de Andrade, Jessika Melo</creator><creator>Coelho, Roberto F.</creator><creator>Lazzarin, Telles Brunelli</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8598-8641</orcidid><orcidid>https://orcid.org/0000-0002-4672-0885</orcidid><orcidid>https://orcid.org/0000-0003-2974-5711</orcidid><orcidid>https://orcid.org/0000-0003-3994-5442</orcidid></search><sort><creationdate>20200701</creationdate><title>Switched-Capacitor Differential Boost Inverter: Design, Modeling, and Control</title><author>Silva, Gilberto Valentim ; de Andrade, Jessika Melo ; Coelho, Roberto F. ; Lazzarin, Telles Brunelli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-92701f1c00999f0264c03d782b168ed258fc0cb8232f14ef5e8257e1274ee3dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Capacitors</topic><topic>Closed loops</topic><topic>Differential boost inverter (DBI)</topic><topic>Differential equations</topic><topic>Electric potential</topic><topic>Energy storage</topic><topic>Equivalent circuits</topic><topic>gain linearization</topic><topic>Harmonic distortion</topic><topic>Inductors</topic><topic>Inverters</topic><topic>modeling and control</topic><topic>Modulation</topic><topic>switched capacitor (SC)</topic><topic>Switches</topic><topic>Topology</topic><topic>Voltage</topic><topic>Voltage control</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Gilberto Valentim</creatorcontrib><creatorcontrib>de Andrade, Jessika Melo</creatorcontrib><creatorcontrib>Coelho, Roberto F.</creatorcontrib><creatorcontrib>Lazzarin, Telles Brunelli</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Silva, Gilberto Valentim</au><au>de Andrade, Jessika Melo</au><au>Coelho, Roberto F.</au><au>Lazzarin, Telles Brunelli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Switched-Capacitor Differential Boost Inverter: Design, Modeling, and Control</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>67</volume><issue>7</issue><spage>5421</spage><epage>5431</epage><pages>5421-5431</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>This article addresses a single-stage bidirectional step-up inverter designed from the integration of a differential boost inverter and switched-capacitor (SC) cells. The conventional boost inverter, even being a step-up topology, presents a gain limitation due to losses, and therefore, does not fully attend the step-up specifications. The insertion of SC multiplier cells into it allows increasing its static gain without increasing the voltage stresses on its components. However, the resulting topology is nonlinear and contains a high amount of energy storage elements, which implies high-order models. In this article, static and dynamic analysis of the SC differential boost inverter is performed under different types of modulation. A generalized and reduced order equivalent circuit and a small-signal average model are proposed, as well as a static gain linearization technique that reduces the harmonic distortion of the output voltage, regulated in the closed loop by a resonant controller. This article also presents the main waveforms, equation, and a comparison between the differential boost inverter and its version with SC multiplier cells. To verify this study, a 250-W prototype of the rated power, input voltage of 60 V, switching frequency of 50 kHz, and the output voltage of 220 V is experimentally evaluated.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2019.2931258</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8598-8641</orcidid><orcidid>https://orcid.org/0000-0002-4672-0885</orcidid><orcidid>https://orcid.org/0000-0003-2974-5711</orcidid><orcidid>https://orcid.org/0000-0003-3994-5442</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2020-07, Vol.67 (7), p.5421-5431 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_proquest_journals_2376748900 |
source | IEEE Electronic Library (IEL) |
subjects | Capacitors Closed loops Differential boost inverter (DBI) Differential equations Electric potential Energy storage Equivalent circuits gain linearization Harmonic distortion Inductors Inverters modeling and control Modulation switched capacitor (SC) Switches Topology Voltage Voltage control Waveforms |
title | Switched-Capacitor Differential Boost Inverter: Design, Modeling, and Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A16%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Switched-Capacitor%20Differential%20Boost%20Inverter:%20Design,%20Modeling,%20and%20Control&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Silva,%20Gilberto%20Valentim&rft.date=2020-07-01&rft.volume=67&rft.issue=7&rft.spage=5421&rft.epage=5431&rft.pages=5421-5431&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2019.2931258&rft_dat=%3Cproquest_RIE%3E2376748900%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376748900&rft_id=info:pmid/&rft_ieee_id=8786918&rfr_iscdi=true |