Estimating and Synthesizing QoE Based on QoS Measurement for Improving Multimedia Services on Cellular Networks Using ANN Method

A quarter of the world population uses the smartphones to access the Internet and various types of multimedia services on the cellular networks, leading to the importance of focusing on user-centric approach, based on the Quality of Experience (QoE) metric, to measure the business success for the Mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE eTransactions on network and service management 2020-03, Vol.17 (1), p.389-402
Hauptverfasser: Uthansakul, Peerapong, Anchuen, Patikorn, Uthansakul, Monthippa, Ahmad Khan, Arfat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 402
container_issue 1
container_start_page 389
container_title IEEE eTransactions on network and service management
container_volume 17
creator Uthansakul, Peerapong
Anchuen, Patikorn
Uthansakul, Monthippa
Ahmad Khan, Arfat
description A quarter of the world population uses the smartphones to access the Internet and various types of multimedia services on the cellular networks, leading to the importance of focusing on user-centric approach, based on the Quality of Experience (QoE) metric, to measure the business success for the Mobile Network Operator (MNO). Although, the quality of the network can be improved with the help of Quality of Service (QoS), but it does not indicate the user satisfaction. Therefore, it is of vital importance to use the QoE along with the QoS parameters to evaluate and improve the quality of the network. In this paper, we propose the QoE modelling, based on the QoS parameters, by using the Artificial Neural Network (ANN) method to evaluate and synthesize the QoE in the actual environment, with the help of Drive Tests. The relationship between the QoS parameters and Opinion Score (OS) has been analyzed and investigated, prior to the selection of QoS parameters for the creation of QoE model and the process of parameter synthesis. The datasets of QoS parameters and OS have been collected with the help of end devices and the subjective evaluation method from the group of defined users, for each of the following multimedia services, i.e., YouTube, Facebook, Line, and the Web browser, in the real environment. The human behavior can be efficiently learned by using the properties of ANN from the collected datasets, to generate the QoE model along with the estimation of QoE score, instead of using the real humans. The results obtained from the process of parameter synthesis have been used as the main guiding paradigm for improving the performance of the networks in terms of user-centric approach based on the QoS parameters.
doi_str_mv 10.1109/TNSM.2019.2946091
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2376747401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8862919</ieee_id><sourcerecordid>2376747401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-17deebcce7dd0f2677c59b53075dd5eee6ecee952d416af3d972fa1104f8fee03</originalsourceid><addsrcrecordid>eNpNkF1PwjAUhhejiYj-AONNE6-HbffR9RIJKglgzOB6KeupDMeKbYfBK3-6XSDGq37ked9z8gTBLcEDQjB_WMzz2YBiwgeUxynm5CzoER7RME4idv7vfhlcWbvBOMkIp73gZ2xdtRWuat6RaCTKD41bg62-u483PUaPwoJEuvGPHM1A2NbAFhqHlDZost0Zve_QWVv7HpCVQDmYfVWC7UIjqOu2FgbNwX1p82HR0nb4cD73ZW6t5XVwoURt4eZ09oPl03gxegmnr8-T0XAalpRHLiRMAqzKEpiUWNGUsTLhqyTCLJEyAYAUSgCeUBmTVKhIckaV8GpilSkAHPWD-2Ov3_izBeuKjW5N40cWNGIpi1mMiafIkSqNttaAKnbG6zGHguCiE110ootOdHES7TN3x0zl1_jjsyyl3Fv_BcGIfDM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376747401</pqid></control><display><type>article</type><title>Estimating and Synthesizing QoE Based on QoS Measurement for Improving Multimedia Services on Cellular Networks Using ANN Method</title><source>IEEE Electronic Library (IEL)</source><creator>Uthansakul, Peerapong ; Anchuen, Patikorn ; Uthansakul, Monthippa ; Ahmad Khan, Arfat</creator><creatorcontrib>Uthansakul, Peerapong ; Anchuen, Patikorn ; Uthansakul, Monthippa ; Ahmad Khan, Arfat</creatorcontrib><description>A quarter of the world population uses the smartphones to access the Internet and various types of multimedia services on the cellular networks, leading to the importance of focusing on user-centric approach, based on the Quality of Experience (QoE) metric, to measure the business success for the Mobile Network Operator (MNO). Although, the quality of the network can be improved with the help of Quality of Service (QoS), but it does not indicate the user satisfaction. Therefore, it is of vital importance to use the QoE along with the QoS parameters to evaluate and improve the quality of the network. In this paper, we propose the QoE modelling, based on the QoS parameters, by using the Artificial Neural Network (ANN) method to evaluate and synthesize the QoE in the actual environment, with the help of Drive Tests. The relationship between the QoS parameters and Opinion Score (OS) has been analyzed and investigated, prior to the selection of QoS parameters for the creation of QoE model and the process of parameter synthesis. The datasets of QoS parameters and OS have been collected with the help of end devices and the subjective evaluation method from the group of defined users, for each of the following multimedia services, i.e., YouTube, Facebook, Line, and the Web browser, in the real environment. The human behavior can be efficiently learned by using the properties of ANN from the collected datasets, to generate the QoE model along with the estimation of QoE score, instead of using the real humans. The results obtained from the process of parameter synthesis have been used as the main guiding paradigm for improving the performance of the networks in terms of user-centric approach based on the QoS parameters.</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2019.2946091</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>ANN ; Artificial neural networks ; Cellular communication ; Cellular networks ; Datasets ; drive tests ; Mathematical models ; MNO ; Multimedia ; opinion score ; parameter synthesis ; Process parameters ; QoE ; QoS ; Quality of service ; Quality of service architectures ; Smartphones ; Synthesis ; User satisfaction ; user-centric ; Wireless networks</subject><ispartof>IEEE eTransactions on network and service management, 2020-03, Vol.17 (1), p.389-402</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-17deebcce7dd0f2677c59b53075dd5eee6ecee952d416af3d972fa1104f8fee03</citedby><cites>FETCH-LOGICAL-c293t-17deebcce7dd0f2677c59b53075dd5eee6ecee952d416af3d972fa1104f8fee03</cites><orcidid>0000-0003-3596-3934 ; 0000-0003-0918-8874 ; 0000-0002-7108-9263 ; 0000-0002-9155-3561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8862919$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8862919$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Uthansakul, Peerapong</creatorcontrib><creatorcontrib>Anchuen, Patikorn</creatorcontrib><creatorcontrib>Uthansakul, Monthippa</creatorcontrib><creatorcontrib>Ahmad Khan, Arfat</creatorcontrib><title>Estimating and Synthesizing QoE Based on QoS Measurement for Improving Multimedia Services on Cellular Networks Using ANN Method</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>A quarter of the world population uses the smartphones to access the Internet and various types of multimedia services on the cellular networks, leading to the importance of focusing on user-centric approach, based on the Quality of Experience (QoE) metric, to measure the business success for the Mobile Network Operator (MNO). Although, the quality of the network can be improved with the help of Quality of Service (QoS), but it does not indicate the user satisfaction. Therefore, it is of vital importance to use the QoE along with the QoS parameters to evaluate and improve the quality of the network. In this paper, we propose the QoE modelling, based on the QoS parameters, by using the Artificial Neural Network (ANN) method to evaluate and synthesize the QoE in the actual environment, with the help of Drive Tests. The relationship between the QoS parameters and Opinion Score (OS) has been analyzed and investigated, prior to the selection of QoS parameters for the creation of QoE model and the process of parameter synthesis. The datasets of QoS parameters and OS have been collected with the help of end devices and the subjective evaluation method from the group of defined users, for each of the following multimedia services, i.e., YouTube, Facebook, Line, and the Web browser, in the real environment. The human behavior can be efficiently learned by using the properties of ANN from the collected datasets, to generate the QoE model along with the estimation of QoE score, instead of using the real humans. The results obtained from the process of parameter synthesis have been used as the main guiding paradigm for improving the performance of the networks in terms of user-centric approach based on the QoS parameters.</description><subject>ANN</subject><subject>Artificial neural networks</subject><subject>Cellular communication</subject><subject>Cellular networks</subject><subject>Datasets</subject><subject>drive tests</subject><subject>Mathematical models</subject><subject>MNO</subject><subject>Multimedia</subject><subject>opinion score</subject><subject>parameter synthesis</subject><subject>Process parameters</subject><subject>QoE</subject><subject>QoS</subject><subject>Quality of service</subject><subject>Quality of service architectures</subject><subject>Smartphones</subject><subject>Synthesis</subject><subject>User satisfaction</subject><subject>user-centric</subject><subject>Wireless networks</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1PwjAUhhejiYj-AONNE6-HbffR9RIJKglgzOB6KeupDMeKbYfBK3-6XSDGq37ked9z8gTBLcEDQjB_WMzz2YBiwgeUxynm5CzoER7RME4idv7vfhlcWbvBOMkIp73gZ2xdtRWuat6RaCTKD41bg62-u483PUaPwoJEuvGPHM1A2NbAFhqHlDZost0Zve_QWVv7HpCVQDmYfVWC7UIjqOu2FgbNwX1p82HR0nb4cD73ZW6t5XVwoURt4eZ09oPl03gxegmnr8-T0XAalpRHLiRMAqzKEpiUWNGUsTLhqyTCLJEyAYAUSgCeUBmTVKhIckaV8GpilSkAHPWD-2Ov3_izBeuKjW5N40cWNGIpi1mMiafIkSqNttaAKnbG6zGHguCiE110ootOdHES7TN3x0zl1_jjsyyl3Fv_BcGIfDM</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Uthansakul, Peerapong</creator><creator>Anchuen, Patikorn</creator><creator>Uthansakul, Monthippa</creator><creator>Ahmad Khan, Arfat</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3596-3934</orcidid><orcidid>https://orcid.org/0000-0003-0918-8874</orcidid><orcidid>https://orcid.org/0000-0002-7108-9263</orcidid><orcidid>https://orcid.org/0000-0002-9155-3561</orcidid></search><sort><creationdate>202003</creationdate><title>Estimating and Synthesizing QoE Based on QoS Measurement for Improving Multimedia Services on Cellular Networks Using ANN Method</title><author>Uthansakul, Peerapong ; Anchuen, Patikorn ; Uthansakul, Monthippa ; Ahmad Khan, Arfat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-17deebcce7dd0f2677c59b53075dd5eee6ecee952d416af3d972fa1104f8fee03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ANN</topic><topic>Artificial neural networks</topic><topic>Cellular communication</topic><topic>Cellular networks</topic><topic>Datasets</topic><topic>drive tests</topic><topic>Mathematical models</topic><topic>MNO</topic><topic>Multimedia</topic><topic>opinion score</topic><topic>parameter synthesis</topic><topic>Process parameters</topic><topic>QoE</topic><topic>QoS</topic><topic>Quality of service</topic><topic>Quality of service architectures</topic><topic>Smartphones</topic><topic>Synthesis</topic><topic>User satisfaction</topic><topic>user-centric</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uthansakul, Peerapong</creatorcontrib><creatorcontrib>Anchuen, Patikorn</creatorcontrib><creatorcontrib>Uthansakul, Monthippa</creatorcontrib><creatorcontrib>Ahmad Khan, Arfat</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Uthansakul, Peerapong</au><au>Anchuen, Patikorn</au><au>Uthansakul, Monthippa</au><au>Ahmad Khan, Arfat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating and Synthesizing QoE Based on QoS Measurement for Improving Multimedia Services on Cellular Networks Using ANN Method</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2020-03</date><risdate>2020</risdate><volume>17</volume><issue>1</issue><spage>389</spage><epage>402</epage><pages>389-402</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>A quarter of the world population uses the smartphones to access the Internet and various types of multimedia services on the cellular networks, leading to the importance of focusing on user-centric approach, based on the Quality of Experience (QoE) metric, to measure the business success for the Mobile Network Operator (MNO). Although, the quality of the network can be improved with the help of Quality of Service (QoS), but it does not indicate the user satisfaction. Therefore, it is of vital importance to use the QoE along with the QoS parameters to evaluate and improve the quality of the network. In this paper, we propose the QoE modelling, based on the QoS parameters, by using the Artificial Neural Network (ANN) method to evaluate and synthesize the QoE in the actual environment, with the help of Drive Tests. The relationship between the QoS parameters and Opinion Score (OS) has been analyzed and investigated, prior to the selection of QoS parameters for the creation of QoE model and the process of parameter synthesis. The datasets of QoS parameters and OS have been collected with the help of end devices and the subjective evaluation method from the group of defined users, for each of the following multimedia services, i.e., YouTube, Facebook, Line, and the Web browser, in the real environment. The human behavior can be efficiently learned by using the properties of ANN from the collected datasets, to generate the QoE model along with the estimation of QoE score, instead of using the real humans. The results obtained from the process of parameter synthesis have been used as the main guiding paradigm for improving the performance of the networks in terms of user-centric approach based on the QoS parameters.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNSM.2019.2946091</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3596-3934</orcidid><orcidid>https://orcid.org/0000-0003-0918-8874</orcidid><orcidid>https://orcid.org/0000-0002-7108-9263</orcidid><orcidid>https://orcid.org/0000-0002-9155-3561</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4537
ispartof IEEE eTransactions on network and service management, 2020-03, Vol.17 (1), p.389-402
issn 1932-4537
1932-4537
language eng
recordid cdi_proquest_journals_2376747401
source IEEE Electronic Library (IEL)
subjects ANN
Artificial neural networks
Cellular communication
Cellular networks
Datasets
drive tests
Mathematical models
MNO
Multimedia
opinion score
parameter synthesis
Process parameters
QoE
QoS
Quality of service
Quality of service architectures
Smartphones
Synthesis
User satisfaction
user-centric
Wireless networks
title Estimating and Synthesizing QoE Based on QoS Measurement for Improving Multimedia Services on Cellular Networks Using ANN Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A26%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20and%20Synthesizing%20QoE%20Based%20on%20QoS%20Measurement%20for%20Improving%20Multimedia%20Services%20on%20Cellular%20Networks%20Using%20ANN%20Method&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Uthansakul,%20Peerapong&rft.date=2020-03&rft.volume=17&rft.issue=1&rft.spage=389&rft.epage=402&rft.pages=389-402&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2019.2946091&rft_dat=%3Cproquest_RIE%3E2376747401%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376747401&rft_id=info:pmid/&rft_ieee_id=8862919&rfr_iscdi=true