Mangrove: An Inference-Based Dynamic Invariant Mining for GPU Architectures
Likely invariants model properties that hold in operating conditions of a computing system. Dynamic mining of invariants aims at extracting logic formulas representing such properties from the system execution traces, and it is widely used for verification of intellectual property (IP) blocks. Altho...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computers 2020-04, Vol.69 (4), p.606-620 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 620 |
---|---|
container_issue | 4 |
container_start_page | 606 |
container_title | IEEE transactions on computers |
container_volume | 69 |
creator | Bombieri, Nicola Busato, Federico Danese, Alessandro Piccolboni, Luca Pravadelli, Graziano |
description | Likely invariants model properties that hold in operating conditions of a computing system. Dynamic mining of invariants aims at extracting logic formulas representing such properties from the system execution traces, and it is widely used for verification of intellectual property (IP) blocks. Although the extracted formulas represent likely invariants that hold in the considered traces, there is no guarantee that they are true in general for the system under verification. As a consequence, to increase the probability that the mined invariants are true in general, dynamic mining has to be performed to large sets of representative execution traces. This makes the execution-based mining process of actual IP blocks very time-consuming due to the trace lengths and to the large sets of monitored signals. This article presents Mangrove , an efficient implementation of a dynamic invariant mining algorithm for GPU architectures. Mangrove exploits inference rules, which are applied at run time to filter invariants from the execution traces and, thus, to sensibly reduce the problem complexity. Mangrove allows users to define invariant templates and, from these templates, it automatically generates kernels for parallel and efficient mining on GPU architectures. The article presents the tool, the analysis of its performance, and its comparison with the best sequential and parallel implementations at the state of the art. |
doi_str_mv | 10.1109/TC.2019.2953846 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2376744410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8903464</ieee_id><sourcerecordid>2376744410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-18c28485efa8347c2b5fa0893edbbe3592b39b425f914dfc38970a332fa3816a3</originalsourceid><addsrcrecordid>eNo9kE1PAjEURRujiYiuXbiZxPVAP2dadzgqEiG6gHXTKa9YIh1sBxL-vUMgrm7ycu59yUHonuABIVgN59WAYqIGVAkmeXGBekSIMldKFJeohzGRuWIcX6OblNYY44Ji1UMfMxNWsdnDUzYK2SQ4iBAs5M8mwTJ7OQSz8ba77030JrTZzAcfVplrYjb-WmSjaL99C7bdRUi36MqZnwR35-yjxdvrvHrPp5_jSTWa5pZK1eZEdsmlAGck46WltXAGS8VgWdfAhKI1UzWnwinCl84yqUpsGKPOMEkKw_ro8bS7jc3vDlKr180uhu6lpqwsSs45wR01PFE2NilFcHob_cbEgyZYH43peaWPxvTZWNd4ODU8APzTUmHGC87-ABfnZWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376744410</pqid></control><display><type>article</type><title>Mangrove: An Inference-Based Dynamic Invariant Mining for GPU Architectures</title><source>IEEE Electronic Library (IEL)</source><creator>Bombieri, Nicola ; Busato, Federico ; Danese, Alessandro ; Piccolboni, Luca ; Pravadelli, Graziano</creator><creatorcontrib>Bombieri, Nicola ; Busato, Federico ; Danese, Alessandro ; Piccolboni, Luca ; Pravadelli, Graziano</creatorcontrib><description>Likely invariants model properties that hold in operating conditions of a computing system. Dynamic mining of invariants aims at extracting logic formulas representing such properties from the system execution traces, and it is widely used for verification of intellectual property (IP) blocks. Although the extracted formulas represent likely invariants that hold in the considered traces, there is no guarantee that they are true in general for the system under verification. As a consequence, to increase the probability that the mined invariants are true in general, dynamic mining has to be performed to large sets of representative execution traces. This makes the execution-based mining process of actual IP blocks very time-consuming due to the trace lengths and to the large sets of monitored signals. This article presents Mangrove , an efficient implementation of a dynamic invariant mining algorithm for GPU architectures. Mangrove exploits inference rules, which are applied at run time to filter invariants from the execution traces and, thus, to sensibly reduce the problem complexity. Mangrove allows users to define invariant templates and, from these templates, it automatically generates kernels for parallel and efficient mining on GPU architectures. The article presents the tool, the analysis of its performance, and its comparison with the best sequential and parallel implementations at the state of the art.</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/TC.2019.2953846</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Computational modeling ; Computer architecture ; Data mining ; GPUs ; Graphics processing units ; Inference ; Intellectual property ; Invariants ; Invarinant mining ; IP networks ; Kernel ; Run time (computers) ; Signal monitoring ; Verification</subject><ispartof>IEEE transactions on computers, 2020-04, Vol.69 (4), p.606-620</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-18c28485efa8347c2b5fa0893edbbe3592b39b425f914dfc38970a332fa3816a3</citedby><cites>FETCH-LOGICAL-c289t-18c28485efa8347c2b5fa0893edbbe3592b39b425f914dfc38970a332fa3816a3</cites><orcidid>0000-0003-0094-4960 ; 0000-0003-3256-5885 ; 0000-0002-7833-1673</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8903464$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8903464$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bombieri, Nicola</creatorcontrib><creatorcontrib>Busato, Federico</creatorcontrib><creatorcontrib>Danese, Alessandro</creatorcontrib><creatorcontrib>Piccolboni, Luca</creatorcontrib><creatorcontrib>Pravadelli, Graziano</creatorcontrib><title>Mangrove: An Inference-Based Dynamic Invariant Mining for GPU Architectures</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>Likely invariants model properties that hold in operating conditions of a computing system. Dynamic mining of invariants aims at extracting logic formulas representing such properties from the system execution traces, and it is widely used for verification of intellectual property (IP) blocks. Although the extracted formulas represent likely invariants that hold in the considered traces, there is no guarantee that they are true in general for the system under verification. As a consequence, to increase the probability that the mined invariants are true in general, dynamic mining has to be performed to large sets of representative execution traces. This makes the execution-based mining process of actual IP blocks very time-consuming due to the trace lengths and to the large sets of monitored signals. This article presents Mangrove , an efficient implementation of a dynamic invariant mining algorithm for GPU architectures. Mangrove exploits inference rules, which are applied at run time to filter invariants from the execution traces and, thus, to sensibly reduce the problem complexity. Mangrove allows users to define invariant templates and, from these templates, it automatically generates kernels for parallel and efficient mining on GPU architectures. The article presents the tool, the analysis of its performance, and its comparison with the best sequential and parallel implementations at the state of the art.</description><subject>Algorithms</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Data mining</subject><subject>GPUs</subject><subject>Graphics processing units</subject><subject>Inference</subject><subject>Intellectual property</subject><subject>Invariants</subject><subject>Invarinant mining</subject><subject>IP networks</subject><subject>Kernel</subject><subject>Run time (computers)</subject><subject>Signal monitoring</subject><subject>Verification</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEURRujiYiuXbiZxPVAP2dadzgqEiG6gHXTKa9YIh1sBxL-vUMgrm7ycu59yUHonuABIVgN59WAYqIGVAkmeXGBekSIMldKFJeohzGRuWIcX6OblNYY44Ji1UMfMxNWsdnDUzYK2SQ4iBAs5M8mwTJ7OQSz8ba77030JrTZzAcfVplrYjb-WmSjaL99C7bdRUi36MqZnwR35-yjxdvrvHrPp5_jSTWa5pZK1eZEdsmlAGck46WltXAGS8VgWdfAhKI1UzWnwinCl84yqUpsGKPOMEkKw_ro8bS7jc3vDlKr180uhu6lpqwsSs45wR01PFE2NilFcHob_cbEgyZYH43peaWPxvTZWNd4ODU8APzTUmHGC87-ABfnZWw</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Bombieri, Nicola</creator><creator>Busato, Federico</creator><creator>Danese, Alessandro</creator><creator>Piccolboni, Luca</creator><creator>Pravadelli, Graziano</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0094-4960</orcidid><orcidid>https://orcid.org/0000-0003-3256-5885</orcidid><orcidid>https://orcid.org/0000-0002-7833-1673</orcidid></search><sort><creationdate>20200401</creationdate><title>Mangrove: An Inference-Based Dynamic Invariant Mining for GPU Architectures</title><author>Bombieri, Nicola ; Busato, Federico ; Danese, Alessandro ; Piccolboni, Luca ; Pravadelli, Graziano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-18c28485efa8347c2b5fa0893edbbe3592b39b425f914dfc38970a332fa3816a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Data mining</topic><topic>GPUs</topic><topic>Graphics processing units</topic><topic>Inference</topic><topic>Intellectual property</topic><topic>Invariants</topic><topic>Invarinant mining</topic><topic>IP networks</topic><topic>Kernel</topic><topic>Run time (computers)</topic><topic>Signal monitoring</topic><topic>Verification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bombieri, Nicola</creatorcontrib><creatorcontrib>Busato, Federico</creatorcontrib><creatorcontrib>Danese, Alessandro</creatorcontrib><creatorcontrib>Piccolboni, Luca</creatorcontrib><creatorcontrib>Pravadelli, Graziano</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bombieri, Nicola</au><au>Busato, Federico</au><au>Danese, Alessandro</au><au>Piccolboni, Luca</au><au>Pravadelli, Graziano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mangrove: An Inference-Based Dynamic Invariant Mining for GPU Architectures</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>69</volume><issue>4</issue><spage>606</spage><epage>620</epage><pages>606-620</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>Likely invariants model properties that hold in operating conditions of a computing system. Dynamic mining of invariants aims at extracting logic formulas representing such properties from the system execution traces, and it is widely used for verification of intellectual property (IP) blocks. Although the extracted formulas represent likely invariants that hold in the considered traces, there is no guarantee that they are true in general for the system under verification. As a consequence, to increase the probability that the mined invariants are true in general, dynamic mining has to be performed to large sets of representative execution traces. This makes the execution-based mining process of actual IP blocks very time-consuming due to the trace lengths and to the large sets of monitored signals. This article presents Mangrove , an efficient implementation of a dynamic invariant mining algorithm for GPU architectures. Mangrove exploits inference rules, which are applied at run time to filter invariants from the execution traces and, thus, to sensibly reduce the problem complexity. Mangrove allows users to define invariant templates and, from these templates, it automatically generates kernels for parallel and efficient mining on GPU architectures. The article presents the tool, the analysis of its performance, and its comparison with the best sequential and parallel implementations at the state of the art.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TC.2019.2953846</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0094-4960</orcidid><orcidid>https://orcid.org/0000-0003-3256-5885</orcidid><orcidid>https://orcid.org/0000-0002-7833-1673</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9340 |
ispartof | IEEE transactions on computers, 2020-04, Vol.69 (4), p.606-620 |
issn | 0018-9340 1557-9956 |
language | eng |
recordid | cdi_proquest_journals_2376744410 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Computational modeling Computer architecture Data mining GPUs Graphics processing units Inference Intellectual property Invariants Invarinant mining IP networks Kernel Run time (computers) Signal monitoring Verification |
title | Mangrove: An Inference-Based Dynamic Invariant Mining for GPU Architectures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A40%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mangrove:%20An%20Inference-Based%20Dynamic%20Invariant%20Mining%20for%20GPU%20Architectures&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Bombieri,%20Nicola&rft.date=2020-04-01&rft.volume=69&rft.issue=4&rft.spage=606&rft.epage=620&rft.pages=606-620&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/TC.2019.2953846&rft_dat=%3Cproquest_RIE%3E2376744410%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376744410&rft_id=info:pmid/&rft_ieee_id=8903464&rfr_iscdi=true |