Workload and Capacity Optimization for Cloud-Edge Computing Systems with Vertical and Horizontal Offloading

A collaborative integration between cloud and edge computing is proposed to be able to exploit the advantages of both technologies. However, most of the existing studies have only considered two-tier cloud-edge computing systems which merely support vertical offloading between local edge nodes and r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE eTransactions on network and service management 2020-03, Vol.17 (1), p.227-238
Hauptverfasser: Thai, Minh-Tuan, Lin, Ying-Dar, Lai, Yuan-Cheng, Chien, Hsu-Tung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 238
container_issue 1
container_start_page 227
container_title IEEE eTransactions on network and service management
container_volume 17
creator Thai, Minh-Tuan
Lin, Ying-Dar
Lai, Yuan-Cheng
Chien, Hsu-Tung
description A collaborative integration between cloud and edge computing is proposed to be able to exploit the advantages of both technologies. However, most of the existing studies have only considered two-tier cloud-edge computing systems which merely support vertical offloading between local edge nodes and remote cloud servers. This paper thus proposes a generic architecture of cloud-edge computing with the aim of providing both vertical and horizontal offloading between service nodes. To investigate the effectiveness of the design for different operational scenarios, we formulate it as a workload and capacity optimization problem with the objective of minimizing the system computation and communication costs. Because such a mixed-integer nonlinear programming (MINLP) problem is NP-hard, we further develop an approximation algorithm which applies a branch-and-bound method to obtain optimal solutions iteratively. Experimental results show that such a cloud-edge computing architecture can significantly reduce total system costs by about 34%, compared to traditional designs which only support vertical offloading. Our results also indicate that, to accommodate the same number of input workloads, a heterogeneous service allocation scenario requires about a 23% higher system costs than a homogeneous scenario.
doi_str_mv 10.1109/TNSM.2019.2937342
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2376744291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8813101</ieee_id><sourcerecordid>2376744291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-21a50eecbdf794d51c17700b1bd2796ba726fdb062a28e6d81619c64e02c27753</originalsourceid><addsrcrecordid>eNpNkFFLwzAQx4soOKcfQHwJ-NyZS9qmeZSiTpjuYVMfQ9qkM1vX1DRFtk9v64b4dHfwu_8dvyC4BjwBwPxu-bp4mRAMfEI4ZTQiJ8EIOCVhFFN2-q8_Dy7ado1xnAIno2DzYd2mslIhWSuUyUYWxu_QvPFma_bSG1uj0jqUVbZT4YNaaZTZbdN5U6_QYtd6vW3Rt_Gf6F07bwpZ_QZNrTN7W_t-nJflkN_zl8FZKatWXx3rOHh7fFhm03A2f3rO7mdh0f_uQwIyxloXuSoZj1QMBTCGcQ65IownuWQkKVWOEyJJqhOVQgK8SCKNSUEYi-k4uD3kNs5-dbr1Ym07V_cnBaEsYVFEOPQUHKjC2bZ1uhSNM1vpdgKwGJyKwakYnIqj037n5rBjtNZ_fJoCBQz0B0Euc6E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376744291</pqid></control><display><type>article</type><title>Workload and Capacity Optimization for Cloud-Edge Computing Systems with Vertical and Horizontal Offloading</title><source>IEEE Electronic Library (IEL)</source><creator>Thai, Minh-Tuan ; Lin, Ying-Dar ; Lai, Yuan-Cheng ; Chien, Hsu-Tung</creator><creatorcontrib>Thai, Minh-Tuan ; Lin, Ying-Dar ; Lai, Yuan-Cheng ; Chien, Hsu-Tung</creatorcontrib><description>A collaborative integration between cloud and edge computing is proposed to be able to exploit the advantages of both technologies. However, most of the existing studies have only considered two-tier cloud-edge computing systems which merely support vertical offloading between local edge nodes and remote cloud servers. This paper thus proposes a generic architecture of cloud-edge computing with the aim of providing both vertical and horizontal offloading between service nodes. To investigate the effectiveness of the design for different operational scenarios, we formulate it as a workload and capacity optimization problem with the objective of minimizing the system computation and communication costs. Because such a mixed-integer nonlinear programming (MINLP) problem is NP-hard, we further develop an approximation algorithm which applies a branch-and-bound method to obtain optimal solutions iteratively. Experimental results show that such a cloud-edge computing architecture can significantly reduce total system costs by about 34%, compared to traditional designs which only support vertical offloading. Our results also indicate that, to accommodate the same number of input workloads, a heterogeneous service allocation scenario requires about a 23% higher system costs than a homogeneous scenario.</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2019.2937342</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; capacity optimization ; Cloud computing ; Communications systems ; Computer architecture ; Data centers ; Delays ; Edge computing ; fog computing ; Nodes ; Nonlinear programming ; Optimization ; Servers ; Workload ; workload offloading ; Workloads</subject><ispartof>IEEE eTransactions on network and service management, 2020-03, Vol.17 (1), p.227-238</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-21a50eecbdf794d51c17700b1bd2796ba726fdb062a28e6d81619c64e02c27753</citedby><cites>FETCH-LOGICAL-c293t-21a50eecbdf794d51c17700b1bd2796ba726fdb062a28e6d81619c64e02c27753</cites><orcidid>0000-0002-5226-4396 ; 0000-0001-5174-7559 ; 0000-0003-3695-5784</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8813101$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8813101$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Thai, Minh-Tuan</creatorcontrib><creatorcontrib>Lin, Ying-Dar</creatorcontrib><creatorcontrib>Lai, Yuan-Cheng</creatorcontrib><creatorcontrib>Chien, Hsu-Tung</creatorcontrib><title>Workload and Capacity Optimization for Cloud-Edge Computing Systems with Vertical and Horizontal Offloading</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>A collaborative integration between cloud and edge computing is proposed to be able to exploit the advantages of both technologies. However, most of the existing studies have only considered two-tier cloud-edge computing systems which merely support vertical offloading between local edge nodes and remote cloud servers. This paper thus proposes a generic architecture of cloud-edge computing with the aim of providing both vertical and horizontal offloading between service nodes. To investigate the effectiveness of the design for different operational scenarios, we formulate it as a workload and capacity optimization problem with the objective of minimizing the system computation and communication costs. Because such a mixed-integer nonlinear programming (MINLP) problem is NP-hard, we further develop an approximation algorithm which applies a branch-and-bound method to obtain optimal solutions iteratively. Experimental results show that such a cloud-edge computing architecture can significantly reduce total system costs by about 34%, compared to traditional designs which only support vertical offloading. Our results also indicate that, to accommodate the same number of input workloads, a heterogeneous service allocation scenario requires about a 23% higher system costs than a homogeneous scenario.</description><subject>Algorithms</subject><subject>capacity optimization</subject><subject>Cloud computing</subject><subject>Communications systems</subject><subject>Computer architecture</subject><subject>Data centers</subject><subject>Delays</subject><subject>Edge computing</subject><subject>fog computing</subject><subject>Nodes</subject><subject>Nonlinear programming</subject><subject>Optimization</subject><subject>Servers</subject><subject>Workload</subject><subject>workload offloading</subject><subject>Workloads</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFFLwzAQx4soOKcfQHwJ-NyZS9qmeZSiTpjuYVMfQ9qkM1vX1DRFtk9v64b4dHfwu_8dvyC4BjwBwPxu-bp4mRAMfEI4ZTQiJ8EIOCVhFFN2-q8_Dy7ado1xnAIno2DzYd2mslIhWSuUyUYWxu_QvPFma_bSG1uj0jqUVbZT4YNaaZTZbdN5U6_QYtd6vW3Rt_Gf6F07bwpZ_QZNrTN7W_t-nJflkN_zl8FZKatWXx3rOHh7fFhm03A2f3rO7mdh0f_uQwIyxloXuSoZj1QMBTCGcQ65IownuWQkKVWOEyJJqhOVQgK8SCKNSUEYi-k4uD3kNs5-dbr1Ym07V_cnBaEsYVFEOPQUHKjC2bZ1uhSNM1vpdgKwGJyKwakYnIqj037n5rBjtNZ_fJoCBQz0B0Euc6E</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Thai, Minh-Tuan</creator><creator>Lin, Ying-Dar</creator><creator>Lai, Yuan-Cheng</creator><creator>Chien, Hsu-Tung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5226-4396</orcidid><orcidid>https://orcid.org/0000-0001-5174-7559</orcidid><orcidid>https://orcid.org/0000-0003-3695-5784</orcidid></search><sort><creationdate>202003</creationdate><title>Workload and Capacity Optimization for Cloud-Edge Computing Systems with Vertical and Horizontal Offloading</title><author>Thai, Minh-Tuan ; Lin, Ying-Dar ; Lai, Yuan-Cheng ; Chien, Hsu-Tung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-21a50eecbdf794d51c17700b1bd2796ba726fdb062a28e6d81619c64e02c27753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>capacity optimization</topic><topic>Cloud computing</topic><topic>Communications systems</topic><topic>Computer architecture</topic><topic>Data centers</topic><topic>Delays</topic><topic>Edge computing</topic><topic>fog computing</topic><topic>Nodes</topic><topic>Nonlinear programming</topic><topic>Optimization</topic><topic>Servers</topic><topic>Workload</topic><topic>workload offloading</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thai, Minh-Tuan</creatorcontrib><creatorcontrib>Lin, Ying-Dar</creatorcontrib><creatorcontrib>Lai, Yuan-Cheng</creatorcontrib><creatorcontrib>Chien, Hsu-Tung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Thai, Minh-Tuan</au><au>Lin, Ying-Dar</au><au>Lai, Yuan-Cheng</au><au>Chien, Hsu-Tung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Workload and Capacity Optimization for Cloud-Edge Computing Systems with Vertical and Horizontal Offloading</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2020-03</date><risdate>2020</risdate><volume>17</volume><issue>1</issue><spage>227</spage><epage>238</epage><pages>227-238</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>A collaborative integration between cloud and edge computing is proposed to be able to exploit the advantages of both technologies. However, most of the existing studies have only considered two-tier cloud-edge computing systems which merely support vertical offloading between local edge nodes and remote cloud servers. This paper thus proposes a generic architecture of cloud-edge computing with the aim of providing both vertical and horizontal offloading between service nodes. To investigate the effectiveness of the design for different operational scenarios, we formulate it as a workload and capacity optimization problem with the objective of minimizing the system computation and communication costs. Because such a mixed-integer nonlinear programming (MINLP) problem is NP-hard, we further develop an approximation algorithm which applies a branch-and-bound method to obtain optimal solutions iteratively. Experimental results show that such a cloud-edge computing architecture can significantly reduce total system costs by about 34%, compared to traditional designs which only support vertical offloading. Our results also indicate that, to accommodate the same number of input workloads, a heterogeneous service allocation scenario requires about a 23% higher system costs than a homogeneous scenario.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNSM.2019.2937342</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5226-4396</orcidid><orcidid>https://orcid.org/0000-0001-5174-7559</orcidid><orcidid>https://orcid.org/0000-0003-3695-5784</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4537
ispartof IEEE eTransactions on network and service management, 2020-03, Vol.17 (1), p.227-238
issn 1932-4537
1932-4537
language eng
recordid cdi_proquest_journals_2376744291
source IEEE Electronic Library (IEL)
subjects Algorithms
capacity optimization
Cloud computing
Communications systems
Computer architecture
Data centers
Delays
Edge computing
fog computing
Nodes
Nonlinear programming
Optimization
Servers
Workload
workload offloading
Workloads
title Workload and Capacity Optimization for Cloud-Edge Computing Systems with Vertical and Horizontal Offloading
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A15%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Workload%20and%20Capacity%20Optimization%20for%20Cloud-Edge%20Computing%20Systems%20with%20Vertical%20and%20Horizontal%20Offloading&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Thai,%20Minh-Tuan&rft.date=2020-03&rft.volume=17&rft.issue=1&rft.spage=227&rft.epage=238&rft.pages=227-238&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2019.2937342&rft_dat=%3Cproquest_RIE%3E2376744291%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376744291&rft_id=info:pmid/&rft_ieee_id=8813101&rfr_iscdi=true