Workload and Capacity Optimization for Cloud-Edge Computing Systems with Vertical and Horizontal Offloading
A collaborative integration between cloud and edge computing is proposed to be able to exploit the advantages of both technologies. However, most of the existing studies have only considered two-tier cloud-edge computing systems which merely support vertical offloading between local edge nodes and r...
Gespeichert in:
Veröffentlicht in: | IEEE eTransactions on network and service management 2020-03, Vol.17 (1), p.227-238 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 238 |
---|---|
container_issue | 1 |
container_start_page | 227 |
container_title | IEEE eTransactions on network and service management |
container_volume | 17 |
creator | Thai, Minh-Tuan Lin, Ying-Dar Lai, Yuan-Cheng Chien, Hsu-Tung |
description | A collaborative integration between cloud and edge computing is proposed to be able to exploit the advantages of both technologies. However, most of the existing studies have only considered two-tier cloud-edge computing systems which merely support vertical offloading between local edge nodes and remote cloud servers. This paper thus proposes a generic architecture of cloud-edge computing with the aim of providing both vertical and horizontal offloading between service nodes. To investigate the effectiveness of the design for different operational scenarios, we formulate it as a workload and capacity optimization problem with the objective of minimizing the system computation and communication costs. Because such a mixed-integer nonlinear programming (MINLP) problem is NP-hard, we further develop an approximation algorithm which applies a branch-and-bound method to obtain optimal solutions iteratively. Experimental results show that such a cloud-edge computing architecture can significantly reduce total system costs by about 34%, compared to traditional designs which only support vertical offloading. Our results also indicate that, to accommodate the same number of input workloads, a heterogeneous service allocation scenario requires about a 23% higher system costs than a homogeneous scenario. |
doi_str_mv | 10.1109/TNSM.2019.2937342 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2376744291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8813101</ieee_id><sourcerecordid>2376744291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-21a50eecbdf794d51c17700b1bd2796ba726fdb062a28e6d81619c64e02c27753</originalsourceid><addsrcrecordid>eNpNkFFLwzAQx4soOKcfQHwJ-NyZS9qmeZSiTpjuYVMfQ9qkM1vX1DRFtk9v64b4dHfwu_8dvyC4BjwBwPxu-bp4mRAMfEI4ZTQiJ8EIOCVhFFN2-q8_Dy7ado1xnAIno2DzYd2mslIhWSuUyUYWxu_QvPFma_bSG1uj0jqUVbZT4YNaaZTZbdN5U6_QYtd6vW3Rt_Gf6F07bwpZ_QZNrTN7W_t-nJflkN_zl8FZKatWXx3rOHh7fFhm03A2f3rO7mdh0f_uQwIyxloXuSoZj1QMBTCGcQ65IownuWQkKVWOEyJJqhOVQgK8SCKNSUEYi-k4uD3kNs5-dbr1Ym07V_cnBaEsYVFEOPQUHKjC2bZ1uhSNM1vpdgKwGJyKwakYnIqj037n5rBjtNZ_fJoCBQz0B0Euc6E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376744291</pqid></control><display><type>article</type><title>Workload and Capacity Optimization for Cloud-Edge Computing Systems with Vertical and Horizontal Offloading</title><source>IEEE Electronic Library (IEL)</source><creator>Thai, Minh-Tuan ; Lin, Ying-Dar ; Lai, Yuan-Cheng ; Chien, Hsu-Tung</creator><creatorcontrib>Thai, Minh-Tuan ; Lin, Ying-Dar ; Lai, Yuan-Cheng ; Chien, Hsu-Tung</creatorcontrib><description>A collaborative integration between cloud and edge computing is proposed to be able to exploit the advantages of both technologies. However, most of the existing studies have only considered two-tier cloud-edge computing systems which merely support vertical offloading between local edge nodes and remote cloud servers. This paper thus proposes a generic architecture of cloud-edge computing with the aim of providing both vertical and horizontal offloading between service nodes. To investigate the effectiveness of the design for different operational scenarios, we formulate it as a workload and capacity optimization problem with the objective of minimizing the system computation and communication costs. Because such a mixed-integer nonlinear programming (MINLP) problem is NP-hard, we further develop an approximation algorithm which applies a branch-and-bound method to obtain optimal solutions iteratively. Experimental results show that such a cloud-edge computing architecture can significantly reduce total system costs by about 34%, compared to traditional designs which only support vertical offloading. Our results also indicate that, to accommodate the same number of input workloads, a heterogeneous service allocation scenario requires about a 23% higher system costs than a homogeneous scenario.</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2019.2937342</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; capacity optimization ; Cloud computing ; Communications systems ; Computer architecture ; Data centers ; Delays ; Edge computing ; fog computing ; Nodes ; Nonlinear programming ; Optimization ; Servers ; Workload ; workload offloading ; Workloads</subject><ispartof>IEEE eTransactions on network and service management, 2020-03, Vol.17 (1), p.227-238</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-21a50eecbdf794d51c17700b1bd2796ba726fdb062a28e6d81619c64e02c27753</citedby><cites>FETCH-LOGICAL-c293t-21a50eecbdf794d51c17700b1bd2796ba726fdb062a28e6d81619c64e02c27753</cites><orcidid>0000-0002-5226-4396 ; 0000-0001-5174-7559 ; 0000-0003-3695-5784</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8813101$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8813101$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Thai, Minh-Tuan</creatorcontrib><creatorcontrib>Lin, Ying-Dar</creatorcontrib><creatorcontrib>Lai, Yuan-Cheng</creatorcontrib><creatorcontrib>Chien, Hsu-Tung</creatorcontrib><title>Workload and Capacity Optimization for Cloud-Edge Computing Systems with Vertical and Horizontal Offloading</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>A collaborative integration between cloud and edge computing is proposed to be able to exploit the advantages of both technologies. However, most of the existing studies have only considered two-tier cloud-edge computing systems which merely support vertical offloading between local edge nodes and remote cloud servers. This paper thus proposes a generic architecture of cloud-edge computing with the aim of providing both vertical and horizontal offloading between service nodes. To investigate the effectiveness of the design for different operational scenarios, we formulate it as a workload and capacity optimization problem with the objective of minimizing the system computation and communication costs. Because such a mixed-integer nonlinear programming (MINLP) problem is NP-hard, we further develop an approximation algorithm which applies a branch-and-bound method to obtain optimal solutions iteratively. Experimental results show that such a cloud-edge computing architecture can significantly reduce total system costs by about 34%, compared to traditional designs which only support vertical offloading. Our results also indicate that, to accommodate the same number of input workloads, a heterogeneous service allocation scenario requires about a 23% higher system costs than a homogeneous scenario.</description><subject>Algorithms</subject><subject>capacity optimization</subject><subject>Cloud computing</subject><subject>Communications systems</subject><subject>Computer architecture</subject><subject>Data centers</subject><subject>Delays</subject><subject>Edge computing</subject><subject>fog computing</subject><subject>Nodes</subject><subject>Nonlinear programming</subject><subject>Optimization</subject><subject>Servers</subject><subject>Workload</subject><subject>workload offloading</subject><subject>Workloads</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFFLwzAQx4soOKcfQHwJ-NyZS9qmeZSiTpjuYVMfQ9qkM1vX1DRFtk9v64b4dHfwu_8dvyC4BjwBwPxu-bp4mRAMfEI4ZTQiJ8EIOCVhFFN2-q8_Dy7ado1xnAIno2DzYd2mslIhWSuUyUYWxu_QvPFma_bSG1uj0jqUVbZT4YNaaZTZbdN5U6_QYtd6vW3Rt_Gf6F07bwpZ_QZNrTN7W_t-nJflkN_zl8FZKatWXx3rOHh7fFhm03A2f3rO7mdh0f_uQwIyxloXuSoZj1QMBTCGcQ65IownuWQkKVWOEyJJqhOVQgK8SCKNSUEYi-k4uD3kNs5-dbr1Ym07V_cnBaEsYVFEOPQUHKjC2bZ1uhSNM1vpdgKwGJyKwakYnIqj037n5rBjtNZ_fJoCBQz0B0Euc6E</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Thai, Minh-Tuan</creator><creator>Lin, Ying-Dar</creator><creator>Lai, Yuan-Cheng</creator><creator>Chien, Hsu-Tung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5226-4396</orcidid><orcidid>https://orcid.org/0000-0001-5174-7559</orcidid><orcidid>https://orcid.org/0000-0003-3695-5784</orcidid></search><sort><creationdate>202003</creationdate><title>Workload and Capacity Optimization for Cloud-Edge Computing Systems with Vertical and Horizontal Offloading</title><author>Thai, Minh-Tuan ; Lin, Ying-Dar ; Lai, Yuan-Cheng ; Chien, Hsu-Tung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-21a50eecbdf794d51c17700b1bd2796ba726fdb062a28e6d81619c64e02c27753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>capacity optimization</topic><topic>Cloud computing</topic><topic>Communications systems</topic><topic>Computer architecture</topic><topic>Data centers</topic><topic>Delays</topic><topic>Edge computing</topic><topic>fog computing</topic><topic>Nodes</topic><topic>Nonlinear programming</topic><topic>Optimization</topic><topic>Servers</topic><topic>Workload</topic><topic>workload offloading</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thai, Minh-Tuan</creatorcontrib><creatorcontrib>Lin, Ying-Dar</creatorcontrib><creatorcontrib>Lai, Yuan-Cheng</creatorcontrib><creatorcontrib>Chien, Hsu-Tung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Thai, Minh-Tuan</au><au>Lin, Ying-Dar</au><au>Lai, Yuan-Cheng</au><au>Chien, Hsu-Tung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Workload and Capacity Optimization for Cloud-Edge Computing Systems with Vertical and Horizontal Offloading</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2020-03</date><risdate>2020</risdate><volume>17</volume><issue>1</issue><spage>227</spage><epage>238</epage><pages>227-238</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>A collaborative integration between cloud and edge computing is proposed to be able to exploit the advantages of both technologies. However, most of the existing studies have only considered two-tier cloud-edge computing systems which merely support vertical offloading between local edge nodes and remote cloud servers. This paper thus proposes a generic architecture of cloud-edge computing with the aim of providing both vertical and horizontal offloading between service nodes. To investigate the effectiveness of the design for different operational scenarios, we formulate it as a workload and capacity optimization problem with the objective of minimizing the system computation and communication costs. Because such a mixed-integer nonlinear programming (MINLP) problem is NP-hard, we further develop an approximation algorithm which applies a branch-and-bound method to obtain optimal solutions iteratively. Experimental results show that such a cloud-edge computing architecture can significantly reduce total system costs by about 34%, compared to traditional designs which only support vertical offloading. Our results also indicate that, to accommodate the same number of input workloads, a heterogeneous service allocation scenario requires about a 23% higher system costs than a homogeneous scenario.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNSM.2019.2937342</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5226-4396</orcidid><orcidid>https://orcid.org/0000-0001-5174-7559</orcidid><orcidid>https://orcid.org/0000-0003-3695-5784</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4537 |
ispartof | IEEE eTransactions on network and service management, 2020-03, Vol.17 (1), p.227-238 |
issn | 1932-4537 1932-4537 |
language | eng |
recordid | cdi_proquest_journals_2376744291 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms capacity optimization Cloud computing Communications systems Computer architecture Data centers Delays Edge computing fog computing Nodes Nonlinear programming Optimization Servers Workload workload offloading Workloads |
title | Workload and Capacity Optimization for Cloud-Edge Computing Systems with Vertical and Horizontal Offloading |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A15%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Workload%20and%20Capacity%20Optimization%20for%20Cloud-Edge%20Computing%20Systems%20with%20Vertical%20and%20Horizontal%20Offloading&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Thai,%20Minh-Tuan&rft.date=2020-03&rft.volume=17&rft.issue=1&rft.spage=227&rft.epage=238&rft.pages=227-238&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2019.2937342&rft_dat=%3Cproquest_RIE%3E2376744291%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376744291&rft_id=info:pmid/&rft_ieee_id=8813101&rfr_iscdi=true |